Advertisement

New Regimes in Cold Gases via Laser-Induced Long-Range Interactions

  • Gershon Kurizki
  • Stefano Giovanazzi
  • Duncan O’Dell
  • Alexandre I. Artemiev
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

The modification of the properties of a Bose-Einstein or a Fermi-Dirac atomic gas due to laser-induced dipole-dipole interactions between the atoms are considered. Nearly-isotropic illumination of the sample by spectrally-fluctuating laser beams averages out the static r −3 dipole-dipole interaction, leaving the retarded r −1 “selfgravitating” attraction in the near zone. The analogies of ultracold many-atom systems, self-bound by such laser-induced “gravity”, with compact stars (“Bose stars” or “White Dwarfs”) are emphasized. Even a single plane-wave laser induces dipole-dipole interactions capable of causing a cigar-shaped Bose condensate to exhibit self binding and density modulations.

Keywords

White Dwarf Density Modulation Polarize Laser Beam Versus Trap Atomic BECs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Anderson et al: Science 269, 198 (1995); C.C. Bradley, C. A. Sackett et al: Phys. Rev. Lett. 75, 1687 (1995); K.B. Davis, M.-O. Mewes et al: Phys. Rev. Lett. 75, 3969 (1995)CrossRefADSGoogle Scholar
  2. 2.
    L. P. Pitaevskii: Sov. Phys. JETP 13, 451 (1961); E.P. Gross: Nuovo Cimento 20, 454 (1961); J. Math. Phys. 4, 195 (1963); F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari: Rev. Mod. Phys. 71, 463 (1999); A. Parkins and D. Walls, Phys. Rep. 303, 1 (1998)MathSciNetGoogle Scholar
  3. 3.
    E. Tiesinga, B.J. Verhaar, and H.T.C. Stoof: Phys. Rev. A 46, R1167 (1992); P.O. Fedichev et al: Phys. Rev. Lett. 77, 2913 (1996); Yu. Kagan, E.L. Surkov and G.V. Shlyapnikov: Phys. Rev. Lett. 79, 2604 (1997); J.L. Bohn and P.S. Julienne: Phys. Rev. A 56, 1486 (1997); S. Inouye et al: Nature 392, 151 (1998); Ph. Courteille et al: Phys. Rev. Lett. 81, 69 (1998); M. Marinescu and L. You: Phys. Rev. Lett. 81, 4596 (1998)CrossRefADSGoogle Scholar
  4. 4.
    K. Burnett: Nature 392, 125 (1998); J. Anglin and W. Ketterle: Nature, 416, 211 (2002)CrossRefADSGoogle Scholar
  5. 5.
    B. DeMarco, D.S. Jin: Science 285, 1703 (1999); Z. Hadzibabic, C.A. Stan et al: Two-species mixture of quantum degenerate Bose and Fermi gases. Preprint cond-mat/0112425 at http://www.arxiv.org (2001); S.R. Granade, M.E. Gehm, K.M. O’Hara, J.E. Thomas: All-Optical Production of a Degenerate Fermi Gas. Preprint cond-mat/0111344 at http://www.arxiv.org (2001)CrossRefGoogle Scholar
  6. 6.
    G. Lenz, P. Meystre, E.M. Wright: Phys. Rev. Lett. 71, 3271 (1993); W. Zhang, D.F. Walls, B.C. Sanders: Phys. Rev. Lett. 72, 60 (1994)CrossRefADSGoogle Scholar
  7. 7.
    L. D. Landau, E.M. Lifshitz: Electrodynamics of continuous media (Pergamon Press, New York, 1960)zbMATHGoogle Scholar
  8. 8.
    T. Thirunamachandran: Mol. Phys. 40, 393 (1980); D.P. Craig and T. Thirunamachandran: Molecular Quantum Electrodynamics (Academic Press, London, 1984), Sec. 7.12CrossRefADSGoogle Scholar
  9. 9.
    D. O’Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin: Phys. Rev. Lett. 84, 5687 (2000); see commentary by J. Anglin: Nature 406 29 (2000)CrossRefADSGoogle Scholar
  10. 10.
    S. Giovanazzi, D. O’Dell, G. Kurizki: Phys. Rev. A 63, 031603 (2001)CrossRefADSGoogle Scholar
  11. 11.
    11 R. Ruffini, S. Bonazzola: Phys. Rev. 187, 1767 (1969); G. Ingrosso, D. Grasso, R. Ruffini: Astron. Astrophys. 248, 481 (1991); P. Jetzer: Phys. Rep. 220, 163 (1992)CrossRefADSGoogle Scholar
  12. 12.
    S. Chandrasekhar: An introduction to the study of stellar structure (Dover Publications, New York 1958), Chapters III, IV; S.L. Shapiro, S.A. Teukolsky: Black. Holes, White Dwarfs, and Neutron Stars (Wiley, New York 1983)Google Scholar
  13. 13.
    P.-H. Chavanis: Phase Transitions in self-gravitating systems. Self gravitating. fermions and hard sphere models Phys. Rev. E, 65, 056123 (2002), also Preprint cond-mat/0109294 at http://www.arxiv.org (2002)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    S. Giovanazzi, G. Kurizki, I.E. Mazets, S. Stringari: Europhys. Lett. 56, 1 (2001)CrossRefADSGoogle Scholar
  15. 15.
    S. Giovanazzi, D. O’Dell, G. Kurizki: Phys. Rev. Lett. 88, 130402 (2002)CrossRefADSGoogle Scholar
  16. 16.
    K. Góral, K. Rzażewski, T. Pfau: Phys. Rev. A 61, 051601(R) (2000); L. Santos, G.V. Shlyapnikov, P. Zoller, M. Lewenstein: Phys. Rev. Lett. 85, 1791 (2000)CrossRefADSGoogle Scholar
  17. 17.
    Y. Pomeau and S. Rica: Phys. Rev. Lett. 72, 2426 (1994)CrossRefADSGoogle Scholar
  18. 18.
    J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, W. Tsai: Classical Electrodynamics (Perseus Books, Reading, MA, 1998)Google Scholar
  19. 19.
    M. Born, E. Wolf: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, London, 1959)zbMATHGoogle Scholar
  20. 20.
    C. Cohen Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions (Wiley, New York, 1992)Google Scholar
  21. 21.
    V. A. Markel: J. Opt. Soc. Am. B 12, 1783 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Castin, K. Mølmer: Phys. Rev. A. 51, R3426 (1995); O. Morice, Y. Castin, J. Dalibard: Phys. Rev. A 51, 3896 (1995)CrossRefADSGoogle Scholar
  23. 23.
    J. Javanainen, J. Ruostekoski: Phys. Rev. A 52, 3033 (1995); J. Ruostekoski, J. Javanainen: Phys. Rev. A 55, 513 (1997); J. Ruostekoski, J. Javanainen: Phys. Rev. A 56, 2056 (1997)CrossRefADSGoogle Scholar
  24. 24.
    L. Jansen, P. Mazur: Physica 21, 193 (1955); 21, 208 (1955); P. Mazur, M. Mandel: Physica 22, 289 (1956); 22, 299 (1956)CrossRefADSGoogle Scholar
  25. 25.
    J. Mathews, R.L. Walker: Mathematical Methods of Physics, (Addison-Wesley, New York, 2nd Edition, 1970)Google Scholar
  26. 26.
    E. M. Lifshitz, L.P. Pitaevskii: Statistical Physics Part 2 (Butterworth-Heinemann, Oxford, 1998)Google Scholar
  27. 27.
    L. E. Reichl: A modern course in statistical physics (John Wiley & Sons 1988), Chapter 7Google Scholar
  28. 28.
    L. D. Landau, E.M. Lifshitz: Statistical physics. Course in theoretical physics, Vol. VGoogle Scholar
  29. 29.
    D. Reiss: Stellar Structure and the Lane-Emden Function: Introduction, at http://www.scientificarts.com/laneemden/laneemden.html
  30. 30.
    H. Haber: Mathematical Notes on the Fermi-Dirac and Bose-Einstein Integrals, at http://scipp.ucsc.edu/~haber/ph112/fermigas2.pdf
  31. 31.
    L. L. Foldy: Phys. Rev. 124, 649 (1961); A.S. Alexandrov, W.H. Beere: Phys. Rev. B 51, 5887 (1995)CrossRefADSGoogle Scholar
  32. 32.
    S. Inouye et al: Science 285, 571 (1999); D.M. Stamper-Kurn et al: Phys. Rev. Lett. 83, 2876 (1999)CrossRefGoogle Scholar
  33. 33.
    A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari: Phys. Rev. Lett. 85, 4422 (2000)CrossRefADSGoogle Scholar
  34. 34.
    N. N. Bogoliubov: J. Phys. (U.S.S.R.) 11, 23 (1947)Google Scholar
  35. 35.
    I. E. Mazets: Collective excitation frequencies of a Bose-Einstein condensate. with electromagnetically induced 1/r attraction. Preprint cond-mat/0007209 at http://www.arxiv.org (2000)
  36. 36.
    L. Viverit, S. Giorgini, L.P. Pitaevskii, S. Stringari: Phys. Rev. A, 63 033603 (2001); J. Oliva: Phys. Rev. B 39, 4204–4209 (1989)CrossRefADSGoogle Scholar
  37. 37.
    M. G. Moore, P. Meystre: Phys. Rev. Lett. 83, 5202 (1999); N. Piovella, R. Bonifacio, B.W.J. McNeil, G.R.M. Robb: Opt. Commun. 187, 165 (2001)CrossRefADSGoogle Scholar
  38. 38.
    V. M. PerezGarcia et al: Phys. Rev. Lett. 77, 5320 (1996)CrossRefADSGoogle Scholar
  39. 39.
    D. Pines, P. Nozieres: The Theory of Quantum Liquids (Benjamin, 1966)Google Scholar
  40. 40.
    R. H. Dicke: Phys. Rev. 89, 472 (1953)CrossRefADSGoogle Scholar
  41. 41.
    T. Walker, D. Sesko, C. Wiemann: Phys. Rev. Lett. 64, 408 (1990)CrossRefADSGoogle Scholar
  42. 42.
    L. Pruvoust, I. Serre, H.T. Duong, and J. Jortner: Phys. Rev. A 61, 053408 (2000)CrossRefADSGoogle Scholar
  43. 43.
    M. Mackie: Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate. Preprint physics/0202041 at http://www.arxiv.org (2002)

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gershon Kurizki
    • 1
  • Stefano Giovanazzi
    • 1
    • 2
  • Duncan O’Dell
    • 3
  • Alexandre I. Artemiev
    • 1
    • 4
    • 5
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Fakultat Physik & Physikalisches InstitutUniversitat StuttgartStuttgartGermany
  3. 3.Sussex Centre for Optical and Atomic Physics, C.P.E.S.University of SussexBrightonUK
  4. 4.Department of PhysicsTexas A&M UniversityCollege StationUSA
  5. 5.General Physics InstituteMoscowRussia

Personalised recommendations