Advertisement

Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

  • Diego del-Castillo-Negrete
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N → ∞ kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping. Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N = 2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of “violent” mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

Keywords

Hamiltonian System Coherent Structure Rotation Period Symmetric State Kinetic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Antoni, Y. Elskens, and D. F. Escande, Phys. Plasmas 5, 841 (1998)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995)CrossRefADSGoogle Scholar
  3. 3.
    N. J. Balmforth, D. del-Castillo-Negrete, and W. R. Young, J. Fluid Mech., 333, 197–230 (1997).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    N. J. Balmforth, S. L. Smith and W. R. Young, J. Fluid Mech., 10, 95–133 (2001).CrossRefADSGoogle Scholar
  5. 5.
    N. J. Balmforth and C. Piccolo, J. Fluid Mech. 449, 85–114 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J. Barré, T. Dauxois, and S. Ruffo, Physica A 295, 254–60 (2001).CrossRefADSGoogle Scholar
  7. 7.
    H. L. Berk, B. N. Breizman, et. al., Phys. Plasmas 6, 3102 (1999).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. M. Churilov, and G. Shukhman, Astrophys. Fluid Dynamics, 38, 145 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    J. D. Crawford and A. Jayaraman, Phys. Plasmas 6, (1999).Google Scholar
  10. 10.
    D. del-Castillo-Negrete, Phys. Lett. A 241, 99 (1998).CrossRefADSGoogle Scholar
  11. 11.
    D. del-Castillo-Negrete, Phys. Plasmas 5, 3886 (1998).CrossRefADSGoogle Scholar
  12. 12.
    D. del-Castillo-Negrete, Physica A 280, 10 (2000).CrossRefADSGoogle Scholar
  13. 13.
    D. del-Castillo-Negrete, Chaos 10, 75 (2000).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    D. del-Castillo-Negrete and M.-C. Firpo, Chaos 12, 496 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. del-Castillo-Negrete, J. M. Greene and P. J. Morrison, Physica D 91, 1 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo and A. Torcini, The Hamiltonian. Mean Field Model: from Dynamics to Statistical Mechanics and back, in “Dynamics and Thermodynamics of Systems with Long-Range Interactions”, T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002), (in this volume)Google Scholar
  17. 17.
    D. F. Escande, S. Zekri and Y. Elskens, Phys. Plasmas 3, 3534 (1996).CrossRefADSGoogle Scholar
  18. 18.
    D. Farina, F. Casagrande, U. Colombo, R. Pozzoli, Phys. Rev. E, 49, 1603 (1994).CrossRefADSGoogle Scholar
  19. 19.
    M.-C. Firpo and Y. Elskens, J. Stat. Phys. 93, 193 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    M.-C. Firpo and Y. Elskens, Phys. Rev. Lett. 84, 3318 (2000).CrossRefADSGoogle Scholar
  21. 21.
    M. E. Goldstein, and L. S. Hultgren, J. Fluid Mech. 197, 295 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. J. Hinch, Perturbation Methods, Cambridge University Press, New York, (1991).zbMATHGoogle Scholar
  23. 23.
    L. Landau, J. Phys. USSR (Moscow) 10, 85–93 (1946).Google Scholar
  24. 24.
    V. Latora, A. Rapisarda, and S. Ruffo, Physica D, 131, 38 (1999).zbMATHCrossRefADSGoogle Scholar
  25. 25.
    A. J. Lichtenberg, and M.A. Lieberman, Regular and stochastic motion, Springer-Verlag, second edition (1983).Google Scholar
  26. 26.
    D. R. Nicholson, Introduction to Plasma Theory, Wiley (1983).Google Scholar
  27. 27.
    T. M. O’Neil, J. H. Winfrey and J. H. Malmberg, Phys. Fluids 14, 1204 (1971).CrossRefADSGoogle Scholar
  28. 28.
    I. N. Onischenko et al, JETP Lett. 12, 281 (1970).ADSGoogle Scholar
  29. 29.
    J. L. Tennyson, J. D. Meiss and P. J. Morrison, Physica D 71, 1 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    H. Weitzner, Phys. Fluids 6, 1123–1127 (1963).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Diego del-Castillo-Negrete
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations