Advertisement

Thermo-statistics or Topology of the Microcanonical Entropy Surface

  • Dieter H. E. Gross
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

Boltzmann’s principle S(E, N, V ...) = lnW(E, N, V ...) allows the interpretation of Statistical Mechanics of a closed system as Pseudo-Riemannian geometry in the space of the conserved parameters E, N, V ... (the conserved mechanical parameters in the language of Ruppeiner [1]) without invoking the thermodynamic limit. The topology is controlled by the curvature of S(E, N, V ...). The most interesting region is the region of (wrong) positive maximum curvature, the region of phase-separation. This is demonstrated among others for the equilibrium of a typical non-extensive system, a self-gravitating and rotating cloud in a spherical container at various energies and angular-momenta. A rich variety of realistic configurations, as single stars, multistar systems, rings and finally gas, are obtained as equilibrium microcanonical phases. The global phase diagram, the topology of the curvature, as function of energy and angular-momentum is presented. No exotic form of thermodynamics like Tsallis [2,3] non-extensive one is necessary. It is further shown that a finite (even mesoscopic) system approaches equilibrium with a change of its entropy ΔS ≥ 0 (Second Law) even when its Poincaré recurrence time is not large.

Keywords

Thermodynamic Limit Canonical Ensemble Recurrence Time Microcanonical Ensemble Single Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ruppeiner: Rev. Mod. Phys. 67, 605 (1995)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    C. Tsallis: Braz. J. Phys. 29, 1 (1999)CrossRefGoogle Scholar
  3. 3.
    C. Tsallis: J. Stat. Phys 52, 479 (1988)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    G. Gallavotti, Statistical Mechanics, Springer, Berlin (1999)zbMATHGoogle Scholar
  5. 5.
    J.L. Lebowitz: Rev. Mod. Phys. 71, S346 (1999)CrossRefGoogle Scholar
  6. 6.
    J.L. Lebowitz: Physica A 263, 516 (1999)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E.H. Lieb, J. Yngvason: Notices Amer. Math. Soc. 45, 571 (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    C.N. Yang, T.D. Lee: Phys. Rev. 87, 404 (1952)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D.H.E. Gross: Chaos, Solitons and Fractals 13, 417 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    D. Lynden-Bell, R. Wood: Mon. Not. R. Astr. Soc. 138, 495 (1968)ADSGoogle Scholar
  11. 11.
    W. Thirring: Z. Phys. 235, 339 (1970)CrossRefADSGoogle Scholar
  12. 12.
    E.V. Votyakov, H.I. Hidmi, A. De Martino, D.H.E. Gross: Phys. Rev. Lett. 89, 031101 (2002)CrossRefADSGoogle Scholar
  13. 13.
    P. Gaspard: J. Stat. Phys. 88, 1215 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    B.H. Lavanda, J. Dunning-Davies: Foundations of Physics Letters 5, 435 (1990)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    E. H. Lieb, J. Yngvason: The mathematical structure of the second law of thermodynamics. math-ph/0204007v1 (2002)Google Scholar
  16. 16.
    E. Zermelo: Wied. Ann. 60, 392 (1897)Google Scholar
  17. 17.
    D.H.E. Gross: PCCP 4, 863 (2002)ADSGoogle Scholar
  18. 18.
    E. H. Lieb, J. Yngvason: Physics Report 310, 1 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    D.H.E. Gross. Ensemble probabilistic equilibrium and non-equilibrium thermodynamics without the thermodynamic limit. In Andrei Khrennikov, editor, Foundations of Probability and Physics, number XIII in PQ-QP: Quantum Probability, White Noise Analysis, pages 131, Boston, October 2001. ACM, World Scientific.Google Scholar
  20. 20.
    A. Einstein: Annalen der Physik 17, 132 (1905)CrossRefADSGoogle Scholar
  21. 21.
    D.H.E. Gross: Rep. Progr. Phys. 53, 605 (1990)CrossRefADSGoogle Scholar
  22. 22.
    A. Chbihi, O. Schapiro, S. Salou, L.G. Sobotka: Experimental evidence for a phase transition in nuclear evaporation process. preprint (1995)Google Scholar
  23. 23.
    R.M. Lynden-Bell: Negative specific heat in clusters of atoms. to be published in Galactic Dynamics (1995)Google Scholar
  24. 24.
    D.H.E. Gross, M.E. Madjet: Microcanonical vs. canonical thermodynamics. condmat/9611192 (1996)Google Scholar
  25. 25.
    D.H.E. Gross, A. Ecker, X.Z. Zhang: Ann. Physik 5, 446 (1996)MathSciNetADSGoogle Scholar
  26. 26.
    D. Lynden-Bell: Physica A 263, 293 (1999)CrossRefADSGoogle Scholar
  27. 27.
    A. Chbihi, O. Schapiro, S. Salou, D.H.E. Gross: Eur. Phys. J. A 5, 251 (1999)CrossRefADSGoogle Scholar
  28. 28.
    F. Gulminelli, Ph. Chomaz: Phys. Rev. Lett. 82, 1402 (1999)CrossRefADSGoogle Scholar
  29. 29.
    L. Casetti, M. Pettini, E.G.D. Cohen, Phys. Rep. 337, 238 (2000)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    M. Schmidt et al: Negative heat capacity for a cluster of 147 sodium stoms. submitted to Nature (2000)Google Scholar
  31. 31.
    M. D’Agostino et al: Phys. Lett. B 473, 219 (2000)CrossRefADSGoogle Scholar
  32. 32.
    M. Schmidt et al: Phys. Rev. Lett. 86, 1191 (2001)CrossRefADSGoogle Scholar
  33. 33.
    I. Ispolatov, E.G.D. Cohen: Physica A 295, 475 (2001)zbMATHCrossRefADSGoogle Scholar
  34. 34.
    L. Boltzmann: Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn.E. Zermelo, In Kinetic Theory, S. Brush ed., Pergamon Press, Oxford, 1965–1972Google Scholar
  35. 35.
    D.H.E. Gross, R. Heck: Phys. Lett. B 318, 405 (1993)CrossRefADSGoogle Scholar
  36. 36.
    P.A. Hervieux, D.H.E. Gross: Z. Phys. D 33, 295 (1995)CrossRefADSGoogle Scholar
  37. 37.
    D.H.E. Gross: Microcanonical thermodynamics: Phase transitions in “Small” systems, volume 66 of Lecture Notes in Physics. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  38. 38.
    Julien Barré, David Mukamel, Stefano Ruffo: Phys. Rev. Lett. 87, 030601 (2001)CrossRefADSGoogle Scholar
  39. 39.
    B. Andresen: Rev. Gen. Therm. 35, 647 (1996)Google Scholar
  40. 40.
    C. Bréchignac et al: J. Chem. Phys. 102, 1 (1995)CrossRefGoogle Scholar
  41. 41.
    D.H.E. Gross, H. Massmann: Nucl. Phys A 471, 339c (1987)CrossRefADSGoogle Scholar
  42. 42.
    D.H.E. Gross: Nucl. Phys. A 681, 366c (2001)CrossRefADSGoogle Scholar
  43. 43.
    F. Gulminelli, Ph. Chomaz, V. Duflot: Europhys. Lett. 50, 434 (2000)CrossRefADSGoogle Scholar
  44. 44.
    Ph. Chomaz, F. Gulminelli: Nucl. Phys. A 647, 153 (1999)CrossRefADSGoogle Scholar
  45. 45.
    Ph. Chomaz, F. Gulminelli, V. Duflot: Phys. Rev. E 64, 046114 (2001)CrossRefADSGoogle Scholar
  46. 46.
    Ph. Chomaz, V. Duflot, F. Gulminelli: Caloric curves and energy fluctuations in the microcanonical liquid-gas phase transition. preprint (2000)Google Scholar
  47. 47.
    D.H.E. Gross, E. Votyakov: Eur. Phys. J. B 15, 115 (2000)ADSGoogle Scholar
  48. 48.
    J.W. Gibbs: Graphical methods in the thermodynamics of fluids. volume I of The scientific papers of J.Willard Gibbs, Longmans, Green, NY (1906)Google Scholar
  49. 49.
    D. Lynden-Bell: Mon. Not. R. Astr. Soc. 136, 101 (1967)ADSGoogle Scholar
  50. 50.
    P.H. Chavanis, I. Ispolatov: Phys. Rev. E 66, 036109 (2002)CrossRefADSGoogle Scholar
  51. 51.
    T. Gilbert, J.R. Dorfman, P. Gaspard: Phys. Rev. Lett. 85, 1606 (2000)CrossRefADSGoogle Scholar
  52. 52.
    J.W. Gibbs: Elementary Principles in Statistical Physics, vol. II of The Collected Works of J.Willard Gibbs. Yale Univ. Press (1902)Google Scholar
  53. 53.
    J.W. Gibbs: Collected works and commentary, vol. I and II. Yale Univ. Press (1936)Google Scholar
  54. 54.
    Kenneth Falconer: Fractal Geometry-Mathematical Foundations and Applications. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dieter H. E. Gross
    • 1
    • 2
  1. 1.Hahn-Meitner InstituteGermany
  2. 2.Freie Universität Berlin Fachbereich PhysikBerlinGermany

Personalised recommendations