Advertisement

Phase Transitions in Finite Systems

  • Philippe Chomaz
  • Francesca Gulminelli
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermostatistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent.

Keywords

Ising Model Thermodynamical Limit Order Phase Transition Canonical Ensemble Phase Coexistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.T. Jaynes, Phys.Rev. 106 (1957) 620 and Phys.Rev. 108 (1957) 171CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. Katz, ‘Principles of statistical mechanics’ Freeman (1967)Google Scholar
  3. 3.
    S. Abe, Y. Okamoto, ‘Nonextensive statistical mechanics and its applications’, Lecture Notes in Physics vol.560 (2001)Google Scholar
  4. 4.
    R. Balian, ‘From microphysics to macrophysics’, Springer Verlag (1982)Google Scholar
  5. 5.
    Ph. Chomaz, Ann. Phys. Fr. 21 (1996) 669ADSCrossRefGoogle Scholar
  6. 6.
    L. Onsager, Phys.Rev. 65 (1944) 117zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C.N. Yang, Phys.Rev. 85 (1952) 809CrossRefADSGoogle Scholar
  8. 8.
    E.A. Guggenheim, J.Chem.phys. 13 (1945) 253.CrossRefADSGoogle Scholar
  9. 9.
    L.D. Landau, E.M. Lifshitz, ‘Statistical Physics’, Pergamon Press (1980)Google Scholar
  10. 10.
    M.E. Fisher, ‘Critical phenomena’, Academic (1971)Google Scholar
  11. 11.
    Ph. Chomaz, F. Gulminelli, Phys.Rev.Lett. 82 (1999) 1402CrossRefADSGoogle Scholar
  12. 12.
    Ph. Chomaz, F. Gulminelli, Int.Journ.Mod.Phys. E8 (1999) 527ADSGoogle Scholar
  13. 13.
    M.S. Challa, J.H. Hetherington, Phys.Rev.Lett. 60 (1988) 77 and Phys.Rev.A 38 (1988) 6324CrossRefADSGoogle Scholar
  14. 14.
    D.H.E. Gross, Phys.Rep. 279 (1997) 119 and “Microcanonical thermodynamics: phase transitions in finite systems”, Lecture notes in Physics vol.66, World Scientific (2001)CrossRefADSGoogle Scholar
  15. 15.
    F. Gulminelli, Ph. Chomaz, Europhys.Lett. 50 (2000) 434CrossRefADSGoogle Scholar
  16. 16.
    F. Gulminelli, Ph. Chomaz, Phys.Rev.Lett. 85 (2000) 3587CrossRefADSGoogle Scholar
  17. 17.
    T.L. Beck, R.S. Berry, Journ.Chem.Phys. 88 (1988) 3910CrossRefADSGoogle Scholar
  18. 18.
    L. Moretto et al., Phys.Rep. 287 (1997) 249CrossRefADSGoogle Scholar
  19. 19.
    V. Antonov, Vest.Leningrad Univ. 7 (1962) 135ADSGoogle Scholar
  20. 20.
    D. Lynden-Bell, Monthly Not.Astr.Soc. 138 (1968) 495ADSGoogle Scholar
  21. 21.
    W. Thirring, Z.Phys. 235 (1970) 339CrossRefADSGoogle Scholar
  22. 22.
    T. Padmanabhan, Phys.Rep. 188 (1990) 285CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    K. Binder, D. P. Landau, Phys. Rev. B 30 (1984) 1477.CrossRefADSGoogle Scholar
  24. 24.
    P. Labastie and R. L. Whetten, Phys. Rev. Lett. 65 (1990) 1567.CrossRefADSGoogle Scholar
  25. 25.
    Ph. Chomaz, F. Gulminelli and V. Duflot, Phys. Rev. E 64 (2001) 046114 and arXiv:cond-mat/0112222.CrossRefADSGoogle Scholar
  26. 26.
    T. Poston, I. Stewart, “Catastrophe Theory and its applications”, Pitman (1978)Google Scholar
  27. 27.
    C.N. Yang and T.D. Lee, Phys.Rev. 87 (1952) 404.zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    K.C. Lee, Phys. Rev. 53 E (1996) 6558.ADSGoogle Scholar
  29. 29.
    M.S.S. Challa et al. Phys. Rev. 34B (1986) 1841.ADSGoogle Scholar
  30. 30.
    J. Barré, D. Mukamel and S. Ruffo, Phys. Rev. Lett. 87 (2001) 030601–1.CrossRefADSGoogle Scholar
  31. 31.
    L. Casetti, M. Pettini and E. G. D. Cohen, Phys. Rep. 337 (2000) 237.CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    M. Schmidt et al, Nature 393 (1998) 238 and Phys.Rev.Lett. 86 (2001) 1191CrossRefADSGoogle Scholar
  33. 33.
    M. D’Agostino et al., Nucl.Phys. A 650 (1999) 329, Phys.Lett.B 473 (2000) 219, Nucl.Phys.A 699 (2002) 795.CrossRefADSGoogle Scholar
  34. 34.
    P. Chomaz and F. Gulminelli, Nucl. Phys. A647 (1999) 153.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Philippe Chomaz
    • 1
  • Francesca Gulminelli
    • 2
  1. 1.GANILDSM-CEA/IN2P3-CNRSCaen cedexFrance
  2. 2.LPC CaenIN2P3-CNRS/ISMRA et UniversitéCaen cedexFrance

Personalised recommendations