Advertisement

Nonextensivity: From Low-Dimensional Maps to Hamiltonian Systems

  • Constantino Tsallis
  • Andrea Rapisarda
  • Vito Latora
  • Fulvio Baldovin
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

We present a brief pedagogical guided tour of the most recent applications of non-extensive statistical mechanics to well defined nonlinear dynamical systems, ranging from one-dimensional dissipative maps to many-body Hamiltonian systems.

Keywords

Hamiltonian System Lyapunov Exponent Entropy Production Entropic Index Entropy Production Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Takens, in Structures and Dynamics-Finite Dimensional Deterministic Studies, eds. H.W. Broer, F. Dumortier, S.J. van Strien and F. Takens (North Holland, Amsterdam, 1991), p. 253; A.C.D. van Enter, R. Fernandez and A.D. Sokal, J. Stat. Phys. 72, 879 (1993).Google Scholar
  2. 2.
    A. Einstein, Annalen der Physik 33 (1910) 1275. E.G.D. Cohen, Physica A 305, 19 (2002); M. Baranger, Physica A 305, 27 (2002); C. Beck and E.G.D. Cohen, [cond-mat/0205097].CrossRefADSGoogle Scholar
  3. 3.
    L. Tisza, Generalized Thermodynamics, MIT Press (1966); P.T. Landsberg, Thermodynamics and Statistical Mechanics, Dover (1991).Google Scholar
  4. 4.
    D.H.E. Gross, Thermo-Statistics or Topology of the Microcanonical Entropy Surface, in “Dynamics and Thermodynamics of Systems with Long-Range Interactions”, T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002), (in this volume)Google Scholar
  5. 5.
    H.G. Schuster, Deterministic Chaos. An Introduction, 3rd Revised Edition (VCH Publishers, Weinheim, 1995).zbMATHGoogle Scholar
  6. 6.
    V. Latora, M. Baranger, A. Rapisarda, C. Tsallis, Phys. Lett. A 273, 97 (2000); M. Baranger, V. Latora, and A. Rapisarda, Chaos Solitons and Fractals 13, 471 (2001); U. Tirnakli, Physica A 305, 119 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics, Wiley, New York (1989).zbMATHGoogle Scholar
  8. 8.
    M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995).CrossRefADSGoogle Scholar
  9. 9.
    V. Latora, A. Rapisarda and S. Ruffo, Phys. Rev. Lett. 80, 692 (1998); Physica D 131, 38 (1999) and Progr. Theor. Phys. Suppl. 139, 204 (2000).CrossRefADSGoogle Scholar
  10. 10.
    V. Latora, A. Rapisarda and S. Ruffo, Phys. Rev. Lett. 83, 2104 (1999) and Physica A 280, 81 (2000).CrossRefADSGoogle Scholar
  11. 11.
    V. Latora and A. Rapisarda, Nucl. Phys. A 681, 331c (2001).CrossRefADSGoogle Scholar
  12. 12.
    T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini, The Hamiltonian Mean Field Model: from Dynamics to Statistical Mechanics and Back, in “Dynamics and Thermodynamics of Systems with Long-Range Interactions”, T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002), (in this volume)Google Scholar
  13. 13.
    C. Anteneodo and C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998); F. Tamarit and C. Anteneodo, Phys. Rev. Lett. 84, 208 (2000).CrossRefADSGoogle Scholar
  14. 14.
    A. Campa, A. Giansanti and D. Moroni, Phys. Rev. E 62, 303 (2000) and Physica A 305, 137 (2002).CrossRefADSGoogle Scholar
  15. 15.
    C. Tsallis, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S.R.A. Salinas and C. Tsallis, Braz. J. Phys. 29, 1 (1999); in Nonextensive Statistical Mechanics and Its Applications, eds. S. Abe and Y. Okamoto, Series Lecture Notes in Physics (Springer-Verlag, Heidelberg, 2001);, in Classical and Quantum Complexity and Nonextensive Thermodynamics, eds. P. Grigolini, C. Tsallis and B.J. West, Chaos, Solitons and Fractals 13, Number 3, 371 (Pergamon-Elsevier, Amsterdam, 2002); in Non Extensive Statistical Mechanics and Physical Applications, eds. G. Kaniadakis, M. Lissia and A. Rapisarda, Physica A 305, 1 (2002); in Nonextensive Entropy-Interdisciplinary Applications, eds. M. Gell-Mann and C. Tsallis (Oxford University Press, Oxford, 2002), to appear; in Annals of the Brazilian Academy of Sciences (2002), to appear [http://www.scielo.br/scielo.php] [cond-mat/0205571].
  16. 16.
    C. Beck, G.S. Lewis and H.L. Swinney, Phys. Rev. E 63, 035303(R) (2001). See also C. Beck, Physica A 295, 195 (2001) and Phys. Rev. Lett. 87, 180601 (2001).CrossRefADSGoogle Scholar
  17. 17.
    T. Arimitsu and N. Arimitsu, Physica A 305, 218 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    I. Bediaga, E.M.F. Curado and J. Miranda, Physica A 286, 156 (2000).CrossRefADSGoogle Scholar
  19. 19.
    A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada, Physica A 293, 549 (2001).CrossRefADSGoogle Scholar
  20. 20.
    D.B. Walton and J. Rafelski, Phys. Rev. Lett. 84, 31 (2000).CrossRefADSGoogle Scholar
  21. 21.
    D.H. Zanette and P.A. Alemany, Phys. Rev. Lett. 75, 366 (1995); C. Tsallis, S.V.F Levy, A.M.C. de Souza and R. Maynard, Phys. Rev. Lett. 75, 3589 (1995) [Erratum: 77, 5442 (1996)]; D. Prato and C. Tsallis, Phys. Rev. E 60, 2398 (1999); C. Tsallis and D.J. Bukman, Phys. Rev. E 54, R2197 (1996); E.K. Lenzi, C. Anteneodo and L. Borland, Phys. Rev. E 63, 051109 (2001).CrossRefADSGoogle Scholar
  22. 22.
    M.A. Montemurro, Physica A 300, 567 (2001).zbMATHCrossRefADSGoogle Scholar
  23. 23.
    L. Borland, Phys. Rev. Lett. (2002), in press.Google Scholar
  24. 24.
    C. Anteneodo, C. Tsallis and A.S. Martinez, Europhys. Lett. (2002), in press [condmat/0109203].Google Scholar
  25. 25.
    C. Tsallis, J.C. Anjos and E.P. Borges, [astro-ph/0203258].Google Scholar
  26. 26.
    P. Quarati, A. Carbone, G. Gervino, G. Kaniadakis, A. Lavagno and E. Miraldi, Nucl. Phys. A 621, 345c (1997).CrossRefADSGoogle Scholar
  27. 27.
    D.B. Ion and M.L.D. Ion, Phys. Rev. Lett. 81, 5714 (1998); Phys. Rev. Lett. 83, 463 (1999); Phys. Rev. E 60, 5261 (1999); Phys. Lett. B 474, 395 (2000); Phys. Lett. B 482, 57 (2000); Phys. Lett. B 503, 263 (2001).CrossRefADSGoogle Scholar
  28. 28.
    F.A. Tamarit, S.A. Cannas and C. Tsallis, Eur. Phys. J. B 1, 545 (1998).CrossRefADSGoogle Scholar
  29. 29.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988); E.M.F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991) [Corrigenda: 24, 3187 (1991) and 25, 1019 (1992)]; C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A 261, 534 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    S. Abe, [cond-mat/0206078].Google Scholar
  31. 31.
    A.K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1989).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    P.T. Landsberg and V. Vedral, Phys. Lett. A 247, 211 (1998); P.T. Landsberg, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S.R.A. Salinas and C. Tsallis, Braz. J. Phys. 29, 46 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    C. Beck and F. Schlogl, Thermodynamics of chaotic systems (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
  34. 34.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality, (Springer-Verlag, New York 1996); A. Bhowal, Physica A 247, 327 (1997).zbMATHGoogle Scholar
  35. 35.
    M. Baranger, Chaos, Complexity, and Entropy: a Physics Talk for Non-Physicists. http://www.necsi.org/projects/baranger/cce.html
  36. 36.
    C. Tsallis, A.R. Plastino and W.-M Zheng, Chaos, Solitons and Fractals 8, 885 (1997). U.M.S. Costa, M.L. Lyra, A.R. Plastino and C. Tsallis, Phys. Rev. E 56, 245 (1997), and M.L. Lyra and C. Tsallis, Phys. Rev. Lett. 80, 53 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    F. Baldovin and A. Robledo, [cond-mat/0205371].Google Scholar
  38. 38.
    F. Baldovin and A. Robledo, [cond-mat/0205356].Google Scholar
  39. 39.
    V. Latora and M. Baranger, Phys. Rev. Lett. 82, 520 (1999).CrossRefADSGoogle Scholar
  40. 40.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 119, 861 (1958); 124, 754 (1959).zbMATHMathSciNetGoogle Scholar
  41. 41.
    YA.B. Pesin, Russian Math. Surveys 32:4, 55 (1977).CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    E. Ott, Chaos in dynamical systems (Cambridge University Press, 1993).Google Scholar
  43. 43.
    G.M. Zaslavsky and B.A. Niyazov, Phys. Rep. 283, 73 (1997).CrossRefADSGoogle Scholar
  44. 44.
    F. Baldovin and C. Tsallis, in progress.Google Scholar
  45. 45.
    C. Tsallis, G. Bemski, and R.S. Mendes, Phys. Lett. A 257, 93 (1999).CrossRefADSGoogle Scholar
  46. 46.
    F. Baldovin, C. Tsallis and B. Schulze, [cond-mat/0203595].Google Scholar
  47. 47.
    A. Bonasera, V. Latora and A. Rapisarda, Phys. Rev. Lett. 75, 3434 (1995).CrossRefADSGoogle Scholar
  48. 48.
    L. Casetti, M. Pettini and E.G.D. Cohen, Phys. Rep. 337, 237 (2000).CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    L. Milanovic, H.A. Posch and W. Thirring, Phys. Rev. E 57, 2763 (1998).CrossRefADSGoogle Scholar
  50. 50.
    H. Koyama and T. Konishi, Phys. Lett. A 279, 226 (2001); Y. Sota, O. Iguchi, M. Morikawa, T. Tatekawa and K. Maeda, Phys. Rev. E 64, 056133 (2001).zbMATHCrossRefADSGoogle Scholar
  51. 51.
    M. Antoni and A. Torcini, Phys. Rev. E 57, R6233 (1998); A. Torcini and M. Antoni, Phys. Rev. E 59, 2746 (1999).CrossRefADSGoogle Scholar
  52. 52.
    D. Lynden-Bell, Physica A 263, 293 (1999).CrossRefADSGoogle Scholar
  53. 53.
    D.H.E. Gross, Microcanonical thermodynamics: Phase transitions in Small systems, 66 Lectures Notes in Physics, World scientific, Singapore (2001).CrossRefGoogle Scholar
  54. 54.
    M. D’Agostino et al., Phys. Lett. B 473, 219 (2000).CrossRefADSGoogle Scholar
  55. 55.
    P. Chomaz, F. Gulminelli, Phase Transitions in finite systems, in “Dynamics and Thermodynamics of Systems with Long-Range Interactions”, T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002), (in this volume)Google Scholar
  56. 56.
    M. Schmidt, R. Kusche, T. Hippler, J. Donges and W. Kronmueller, Phys. Rev. Lett. 86, 1191 (2001).CrossRefADSGoogle Scholar
  57. 57.
    J. Klafter and G. Zumofen, Phys. Rev. E 49, 4873 (1994).CrossRefADSGoogle Scholar
  58. 58.
    G. Parisi, Physica A 280, 115 (2000).CrossRefADSGoogle Scholar
  59. 59.
    P.G. Benedetti and F.H. Stillinger, Nature 410, 259 (2001).CrossRefADSGoogle Scholar
  60. 60.
    A. Coniglio, Physica A 306, 76 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001)CrossRefADSGoogle Scholar
  62. 62.
    V. Latora, A. Rapisarda, C. Tsallis, Physica A 305, 129 (2002)zbMATHCrossRefADSGoogle Scholar
  63. 63.
    N.S. Krylov, Works on the Foundations of Statistical Physics, translated by A.B. Migdal, Ya. G. Sinai and Yu. L. Zeeman, Princeton University Press (1979) and Nature 153, 709 (1944)Google Scholar
  64. 64.
    A. Kudrolli, J. Henry, Phys. Rev. E 62, R1489 (2000); Y-H. Taguchi, H. Takayasu, Europhys. Lett. 30, 499 (1995)CrossRefADSGoogle Scholar
  65. 65.
    M.F. Shlesinger, G.M. Zaslavsky, J. Klafter, Nature 363, 31 (1993)CrossRefADSGoogle Scholar
  66. 66.
    A. Rapisarda, C. Tsallis, A. Giansanti in preparationGoogle Scholar
  67. 67.
    S. Abe, N. Suzuki, [cond-mat/0204336]Google Scholar
  68. 68.
    M.A. Montemurro, F. Tamarit C. Anteneodo [cond-mat/0205355]Google Scholar
  69. 69.
    E.P. Borges, C. Tsallis, Physica A 305, 148 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Constantino Tsallis
    • 1
  • Andrea Rapisarda
    • 2
  • Vito Latora
    • 2
  • Fulvio Baldovin
    • 1
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de Janeiro, RJBrazil
  2. 2.Dipartimento di Fisica e AstronomiaInfn Universitá di CataniaCataniaItaly

Personalised recommendations