Advertisement

Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems

  • Pierre-Henri Chavanis
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

The formation of large-scale vortices is an intriguing phenomenon in two-dimensional turbulence. Such organization is observed in large-scale oceanic or atmospheric flows, and can be reproduced in laboratory experiments and numerical simulations. A general explanation of this organization was first proposed by Onsager (1949) by considering the statistical mechanics for a set of point vortices in two-dimensional hydrodynamics. Similarly, the structure and the organization of stellar systems (globular clusters, elliptical galaxies,...) in astrophysics can be understood by developing a statistical mechanics for a system of particles in gravitational interaction as initiated by Chandrasekhar (1942). These statistical mechanics turn out to be relatively similar and present the same difficulties due to the unshielded long-range nature of the interaction. This analogy concerns not only the equilibrium states, i.e. the formation of large-scale structures, but also the relaxation towards equilibrium and the statistics of fluctuations. We will discuss these analogies in detail and also point out the specificities of each system.

Keywords

Canonical Ensemble Point Vortex Stellar System Microcanonical Ensemble Boltzmann Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Agekyan, Sov. Astron. 5, 809 (1962)ADSGoogle Scholar
  2. 2.
    V. A. Antonov, Vest. Leningr. Gos. Univ. 7, 135 (1962)Google Scholar
  3. 3.
    E. B. Aronson, C.J. Hansen, Astrophys. J. 177, 145 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    R. Balescu, Statistical Mechanics of Charged Particles (Interscience, New York, 1963)zbMATHGoogle Scholar
  5. 5.
    P. Barge, J. Sommeria, Astron. Astrophys. 295, L1 (1995)ADSGoogle Scholar
  6. 6.
    J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    P. Bertrand, Contribution à l’étude de modèles mathématiques de plasmas non collisionnels, PhD thesis, Université de Nancy I (1972)Google Scholar
  8. 8.
    N. Bilic, R.D. Viollier, Phys. Lett. B 408, 75 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)Google Scholar
  10. 10.
    B. M. Boghosian, Phys. Rev. E 53, 4754 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    F. Bouchet, Mécanique statistique pour des écoulements géophysiques, PhD thesis, Université J. Fourier (2001)Google Scholar
  13. 13.
    F. Bouchet, P.H. Chavanis, J. Sommeria, “Statistical mechanics of Jupiter’s Great Red Spot in the shallow water model”, preprint.Google Scholar
  14. 14.
    F. Bouchet, J. Sommeria, J. Fluid. Mech. 464, 165 (2002)zbMATHADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Bracco, P.H. Chavanis, A. Provenzale, E. Spiegel, Phys. Fluids 11, 2280 (1999)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 143, 501 (1992)zbMATHADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    G. F. Carnevale, J.C. McWilliams, Y. Pomeau, J.B. Weiss, W.R. Young, Phys. Rev. Lett. 66, 2735 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    S. Chandrasekhar, An Introduction to the Theory of Stellar Structure (Dover 1939)Google Scholar
  20. 20.
    S. Chandrasekhar, Astrophys. J. 94, 511 (1941)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. Chandrasekhar, Principles of stellar dynamics (Dover 1942)Google Scholar
  22. 22.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)zbMATHADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. Chandrasekhar, Astrophys. J. 97, 255 (1943)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    S. Chandrasekhar, Astrophys. J. 99, 25 (1944)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    S. Chandrasekhar, Astrophys. J. 99, 47 (1944)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    S. Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949)zbMATHADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    S. Chandrasekhar & J. von Neumann: Astrophys. J. 95, 489 (1942)zbMATHADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. Chandrasekhar & J. von Neumann: Astrophys. J. 97, 1 (1943)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. H. Chavanis, Contribution à la mécanique statistique des tourbillons bidimensionnels. Analogie avec la relaxation violente des systèmes stellaires, Thèse de doctorat, Ecole Normale Supérieure de Lyon (1996)Google Scholar
  30. 30.
    P. H. Chavanis: Phys. Rev. E 58, R1199 (1998)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. H. Chavanis: Mon. Not. R. astr. Soc. 300, 981 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    P. H. Chavanis: Annals of the New York Academy of Sciences 867, 120 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    P. H. Chavanis: Astron. Astrophys. 356, 1089 (2000)ADSGoogle Scholar
  34. 34.
    P. H. Chavanis: Phys. Rev. Lett. 84, 5512 (2000)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    P. H. Chavanis, “On the analogy between two-dimensional vortices and stellar systems”, Proceedings of the IUTAM Symposium on Geometry and Statistics of Turbulence (2001), T. Kambe, T. Nakano, T. Miyauchi Eds. (Kluwer Academic Publishers)Google Scholar
  36. 36.
    P. H. Chavanis: Phys. Rev. E 64, 026309 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    P. H. Chavanis: Astron. Astrophys. 381, 340 (2002)zbMATHADSCrossRefGoogle Scholar
  38. 38.
    P. H. Chavanis: Astron. Astrophys. 381, 709 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    P. H. Chavanis: Astron. Astrophys. 386, 732 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    P. H. Chavanis: Phys. Rev. E 65, 056302 (2002)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    P. H. Chavanis: Phys. Rev. E 65, 056123 (2002)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    P. H. Chavanis, “Statistical mechanics of violent relaxation in stellar systems”, Proceedings of the Conference on Multiscale Problems in Science and Technology (Springer 2002); also available on astro-ph.Google Scholar
  43. 43.
    P. H. Chavanis, “The self-gravitating Fermi gas”, Proceedings of the Conference Dark2002: 4th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, 4–9 Feb 2002, Cape Town, South African Astroparticles (Springer); also available on astro-ph/0205426.Google Scholar
  44. 44.
    P. H. Chavanis, “Gravitational instability of isothermal and polytropic spheres”, submitted to Astron. Astrophys. [astro-ph/0207080].Google Scholar
  45. 45.
    P. H. Chavanis, I. Ispolatov: Phys. Rev. E 66, 036109 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    P. H. Chavanis, C. Rosier, C. Sire “Thermodynamics of self-gravitating systems”, Phys. Rev. E 66, 036105 (2002)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    P. H. Chavanis, C. Sire: Phys. Rev. E 62, 490 (2000)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    P. H. Chavanis, C. Sire: Phys. Fluids 13, 1904 (2001)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    P. H. Chavanis, J. Sommeria: J. Fluid Mech. 314, 267 (1996)zbMATHADSCrossRefGoogle Scholar
  50. 50.
    P. H. Chavanis, J. Sommeria: Phys. Rev. Lett. 78, 3302 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    P. H. Chavanis, J. Sommeria: J. Fluid Mech. 356, 259 (1998)zbMATHADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    P. H. Chavanis, J. Sommeria: Mon. Not. R. astr. Soc. 296, 569 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    P. H. Chavanis, J. Sommeria: Phys. Rev. E 65, 026302 (2002)ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    P. H. Chavanis, J. Sommeria, R. Robert: Astrophys. J. 471, 385 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    K. V. Chukbar: Plasma Physics Reports. 25, 77 (1999)ADSGoogle Scholar
  56. 56.
    H. Cohn: Astrophys. J. 242, 765 (1980)ADSCrossRefGoogle Scholar
  57. 57.
    H. J. de Vega, N. Sanchez: Nucl. Phys. B 625, 409 (2002)zbMATHADSCrossRefGoogle Scholar
  58. 58.
    G. L. Eyink, H. Spohn: J. Stat. Phys. 70, 833 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  59. 59.
    E. Follana, V. Laliena: Phys. Rev. E 61, 6270 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    P. Godon, M. Livio: Astrophys. J. 537, 396 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    A. E. Hansen, D. Marteau, P. Tabeling: Phys. Rev. E 58, 7261 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    P. Hertel, W. Thirring, “Thermodynamic instability of a system of gravitating fermions” in Quanten und Felder, edited by H.P. Dürr (Vieweg, Braunschweig, 1971)Google Scholar
  63. 63.
    J. Hjorth, J. Madsen: Mon. Not. R. astr. Soc. 265, 237 (1993)ADSGoogle Scholar
  64. 64.
    J. Holtsmark, Ann. Phys. (Leipzig) 58, 577 (1919)CrossRefGoogle Scholar
  65. 65.
    G. Horwitz, J. Katz: Astrophys. J. 222, 941 (1978)ADSCrossRefGoogle Scholar
  66. 66.
    X. P. Huang, C.F. Driscoll: Phys. Rev. Lett. 72, 2187 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    I. A. Ibragimov, Yu. V. Linnik, Independant and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971)Google Scholar
  68. 68.
    S. Inagaki, D. Lynden-Bell: Mon. Not. R. astr. Soc. 205, 913 (1983)zbMATHADSGoogle Scholar
  69. 69.
    J. Jimenez: J. Fluid Mech. 313, 223 (1996)zbMATHADSCrossRefMathSciNetGoogle Scholar
  70. 70.
    G. Joyce, D. Montgomery: J. Plasma Phys. 10, 107 (1973)ADSCrossRefGoogle Scholar
  71. 71.
    B. B. Kadomtsev, O.P. Pogutse: Phys. Rev. Lett. 25, 1155 (1970)ADSCrossRefGoogle Scholar
  72. 72.
    H. E. Kandrup: Physics Reports 63, 1 (1980)ADSCrossRefMathSciNetGoogle Scholar
  73. 73.
    H. E. Kandrup: Astrophys. J. 244, 316 (1981)ADSCrossRefMathSciNetGoogle Scholar
  74. 74.
    H. E. Kandrup: Astrophys. & Space Sci. 97, 435 (1983)zbMATHADSCrossRefMathSciNetGoogle Scholar
  75. 75.
    J. Katz: Mon. Not. R. astr. Soc. 183, 765 (1978)zbMATHADSGoogle Scholar
  76. 76.
    J. Katz, D. Lynden-Bell: Mon. Not. R. astr. Soc. 184, 709 (1978)ADSGoogle Scholar
  77. 77.
    J. Katz, I. Okamoto: Mon. Not. R. astr. Soc. 317, 163 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    E. Kazantzev, J. Sommeria, J. Verron: J. Phys. Ocean. 28, 1017 (1998)CrossRefADSGoogle Scholar
  79. 79.
    G. Kirchhoff, in Lectures in Mathematical Physics, Mechanics (Teubner, Leipzig, 1877)Google Scholar
  80. 80.
    R.H. Kraichnan: J. Fluid Mech. 67, 155 (1975)zbMATHADSCrossRefGoogle Scholar
  81. 81.
    H.A. Kramers, Physica 7, 284 (1940)zbMATHADSCrossRefMathSciNetGoogle Scholar
  82. 82.
    B.N. Kuvshinov, T.J. Schep: Phys. Rev. Lett. 84, 650 (2000)ADSCrossRefGoogle Scholar
  83. 83.
    G.A. Kuzmin, “Statistical mechanics of the organization into two-dimensional coherent structures”, in Structural Turbulence, edited by M.A. Goldshtik (Acad. Naouk CCCP Novosibirsk, Institute of ThermoPhysics, 1982), pp. 103–114.Google Scholar
  84. 84.
    C. Lancellotti, M. Kiessling: Astrophys. J. 549, L93 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    R.B. Larson: Mon. Not. R. astr. Soc. 147, 323 (1970)ADSGoogle Scholar
  86. 86.
    J.P. Laval, P.H. Chavanis, B. Dubrulle, C. Sire: Phys. Rev E 63, 065301(R) (2001)ADSCrossRefGoogle Scholar
  87. 87.
    J.P. Laval, B. Dubrulle, S. Nazarenko: Phys. Rev. Lett. 83, 4061 (1999)ADSCrossRefGoogle Scholar
  88. 88.
    E.P. Lee: Astrophys. J. 151, 687 (1968)ADSCrossRefGoogle Scholar
  89. 89.
    T.S. Lundgren, Y.B. Pointin: J. Stat. Phys. 17, 323 (1977)CrossRefADSGoogle Scholar
  90. 90.
    D. Lynden-Bell: Mon. Not. R. astr. Soc. 136, 101 (1967)ADSGoogle Scholar
  91. 91.
    D. Lynden-Bell, P.P. Eggleton: Mon. Not. R. astr. Soc. 191, 483 (1980)ADSMathSciNetGoogle Scholar
  92. 92.
    D. Lynden-Bell, R. Wood: Mon. Not. R. astr. Soc. 138, 495 (1968)ADSGoogle Scholar
  93. 93.
    J.C. McWilliams: J. Fluid Mech. 146, 21 (1984)zbMATHADSCrossRefGoogle Scholar
  94. 94.
    J. Michel, R. Robert: J. Phys. Stat. 77, 645 (1994)zbMATHCrossRefGoogle Scholar
  95. 95.
    J. Miller: Phys. Rev. Lett. 65, 2137 (1990)zbMATHADSCrossRefMathSciNetGoogle Scholar
  96. 96.
    J. Miller, P.B. Weichman, M.C. Cross: Phys. Rev. A 45, 2328 (1992)ADSCrossRefGoogle Scholar
  97. 97.
    I.A. Min, I. Mezic, A. Leonard: Phys. Fluids 8, 1169 (1996)zbMATHADSCrossRefMathSciNetGoogle Scholar
  98. 98.
    P.K. Newton, The N-Vortex Problem: Analytical Techniques, Springer-Verlag, Applied Mathematical Sciences Vol. 145, May 2001.Google Scholar
  99. 99.
    M.V. Nezlin, E.N. Snezhkin, Rossby vortices, spiral structures, solitons (Springer-Verlag 1993)Google Scholar
  100. 100.
    E.A. Novikov: Sov. Phys. JETP 41, 937 (1975)ADSGoogle Scholar
  101. 101.
    L. Onsager: Nuovo Cimento Suppl. 6, 279 (1949)CrossRefMathSciNetGoogle Scholar
  102. 102.
    T. Padmanabhan: Astrophys. J. Supp. 71, 651 (1989)ADSCrossRefGoogle Scholar
  103. 103.
    T. Padmanabhan: Phys. Rep. 188, 285 (1990)ADSCrossRefMathSciNetGoogle Scholar
  104. 104.
    J. Pedlosky, Geophysical fluid dynamics (Springer-Verlag, 1996)Google Scholar
  105. 105.
    M.V. Penston: Mon. Not. R. astr. Soc. 144, 425 (1969)ADSGoogle Scholar
  106. 106.
    A. Plastino, A.R. Plastino: Phys. Lett. A 226, 257 (1997)zbMATHADSCrossRefMathSciNetGoogle Scholar
  107. 107.
    Y.B. Pointin, T.S. Lundgren: Phys. Fluids. 19, 1459 (1976)zbMATHADSCrossRefGoogle Scholar
  108. 108.
    H. Risken, The Fokker-Planck equation (Springer, 1989)Google Scholar
  109. 109.
    R. Robert: J. Stat. Phys. 65, 531 (1991)zbMATHCrossRefADSGoogle Scholar
  110. 110.
    R. Robert, C. Rosier: J. Stat. Phys. 86, 481 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  111. 111.
    R. Robert, J. Sommeria: J. Fluid Mech. 229, 291 (1991)zbMATHADSCrossRefMathSciNetGoogle Scholar
  112. 112.
    R. Robert, J. Sommeria: Phys. Rev. Lett. 69, 2776 (1992)zbMATHADSCrossRefMathSciNetGoogle Scholar
  113. 113.
    A. Salzberg, S. Prager, J. Chem. Phys. 38, 2587 (1963)CrossRefADSGoogle Scholar
  114. 114.
    G. Severne, M. Luwel: Astrophys. & Space Sci. 72, 293 (1980)zbMATHADSCrossRefMathSciNetGoogle Scholar
  115. 115.
    C. Sire, P.H. Chavanis: Phys. Rev. E 61, 6644 (2000)ADSCrossRefMathSciNetGoogle Scholar
  116. 116.
    C. Sire, P.H. Chavanis: Phys. Rev. E, in press [cond-mat/0204303].Google Scholar
  117. 117.
    A.R. Smith, T.M. O’Neil: Phys. Fluids B 2, 2961 (1990)ADSCrossRefGoogle Scholar
  118. 118.
    J. Sommeria, C. Nore, T. Dumont, R. Robert: C.R. Acad. Sci. II 312, 999 (1991)ADSGoogle Scholar
  119. 119.
    J. Sommeria, C. Staquet, R. Robert: J. Fluid Mech. 233, 661 (1991)zbMATHADSCrossRefMathSciNetGoogle Scholar
  120. 120.
    B. Stahl, M.K.H. Kiessling, K. Schindler: Planet. Space Sci. 43, 271 (1994)ADSCrossRefGoogle Scholar
  121. 121.
    P. Tanga, A. Babiano, B. Dubrulle, A. Provenzale: Icarus 121, 158 (1996)ADSCrossRefGoogle Scholar
  122. 122.
    S. Tremaine, M. Hénon, D. Lynden-Bell: Mon. Not. R. astr. Soc. 219 285 (1986)zbMATHADSGoogle Scholar
  123. 123.
    C. Tsallis: J. Stat. Phys. 52 479 (1988)Google Scholar
  124. 124.
    B. Turkington, N. Whitaker: SIAM J. Sci. Comput. 17, 1414 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  125. 125.
    J.B. Weiss, J.C. McWilliams: Phys. Fluids A 5, 608 (1993)zbMATHADSCrossRefGoogle Scholar
  126. 126.
    J.B. Weiss, A. Provenzale and J.C. McWilliams: Phys. Fluids 10, 1929 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  127. 127.
    C.R. Willis, R.H. Picard: Phys. Rev. A 9, 1343 (1974)ADSCrossRefMathSciNetGoogle Scholar
  128. 128.
    V.P. Youngkins, B.N. Miller: Phys. Rev. E 62, 4582 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Pierre-Henri Chavanis
    • 1
  1. 1.Laboratoire de Physique QuantiqueUniversité Paul SabatierToulouseFrance

Personalised recommendations