Advertisement

Applications of the Anaerobic Digestion Process

  • Irini Angelidaki
  • Lars Ellegaard
  • Birgitte Kiœr Ahring
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 82)

Abstract

At the start of the new millennium waste management has become a political priority in many countries. One of the main problems today is to cope with an increasing amount of primary waste in an environmentally acceptable way. Biowastes, i. e., municipal, agricultural or industrial organic waste, as well as contaminated soils etc., have traditionally been deposited in landfills or even dumped into the sea or lakes without much environmental concern. In recent times, environmental standards of waste incineration and controlled land filling have gradually improved, and new methods of waste sorting and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling and incineration of organic waste has become less desirable, and legislation, both in Europe and elsewhere, tends to favor biological treatment as a way of recycling minerals and nutrients of organic wastes from society back to the food production and supply chain. Removing the relatively wet organic waste from the general waste streams also results in a better calorific value of the remainder for incineration, and a more stable fraction for land filling.

Keywords

Anaerobic digestion Reactors Codigestion Biowastes Solid waste Slurries Manure Industrial waste 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McInerney MJ, Bryant MP, Stafford DA (1980) Metabolic stages and energetics of microbial anaerobic digestion. In: Stafford DA, Wheatley BI, Hudges DE (ed) Anaerobic digestion. Applied Science, LondonGoogle Scholar
  2. 2.
    Gujer W, Zehnder AJB (1983) Water Sci Technol 15:127Google Scholar
  3. 3.
    Allison MJ (1978) Appl Environ Microbiol 35:872Google Scholar
  4. 4.
    Switzenbaum MS, Giraldo-Gomez E,H ickey RF (1990) Enzyme Microb Technol 12:722CrossRefGoogle Scholar
  5. 5.
    Ahring BK, Sandberg M, Angelidaki I (1995) Appl Microbiol BiotechnolGoogle Scholar
  6. 6.
    Dugba PN, Zhang H (1999) Bioresour Technol 68:225CrossRefGoogle Scholar
  7. 7.
    Whitmore TN, Lazzari M, Lloyd D (1985) Biotechnol Lett 7:283CrossRefGoogle Scholar
  8. 8.
    van Lier JB, Rebac S, Lettinga G (1996) In: Proceedings of the IASWQ-NVA Int. conf. on advanced wastewater treatmentGoogle Scholar
  9. 9.
    Varel VH, Hashimoto AG, Chen YR (1980) Appl Environ Microbiol 40:217Google Scholar
  10. 10.
    Hashimoto AG (1982) Agriculural Wastes 4:345CrossRefGoogle Scholar
  11. 11.
    Ahring BK (1995) Ant van Leeuw 67:91CrossRefGoogle Scholar
  12. 12.
    Chen YR, Day DL (1986) Agriculural Wastes 16:313CrossRefGoogle Scholar
  13. 13.
    Fang HHT, Wai-Chung Chung D (1999) Water Sci Technol 40:77CrossRefGoogle Scholar
  14. 14.
    Archer DB (1983) Enzyme Microb Technol 5:162CrossRefGoogle Scholar
  15. 15.
    Buhr HO, Andrews JF (1977) Wat Res 11:129CrossRefGoogle Scholar
  16. 16.
    Varel VH, Isaacson HR, Bryant MP (1977) Appl Environ Microbiol 33:298Google Scholar
  17. 17.
    Hashimoto AG (1982) Biotechnol Bioeng 14:2039CrossRefGoogle Scholar
  18. 18.
    Mackie RI, Bryant MP (1981) Appl Environ Microbiol 41:1363Google Scholar
  19. 19.
    Madamwar D, Patel A, Patel V (1990) J Ferment Bioeng 70:340CrossRefGoogle Scholar
  20. 20.
    Casali GB, Senior E (1989) J Chem Tech Biotechnol 44:31CrossRefGoogle Scholar
  21. 21.
    Hashimoto AG, Varel VH, Chen YR (1981) Agriculural Wastes 3:241CrossRefGoogle Scholar
  22. 22.
    Hashimoto AG (1983) Biotechnol Bioeng 25:185CrossRefGoogle Scholar
  23. 23.
    Nyns EJ, Schönborn W (1986) Biomethanation processes, Berlin: Wiley-VCH Weinheim, (8): Microbial degradations, p 207Google Scholar
  24. 24.
    Kato MT, Field JA, Kleerebezem R, Lettinga G (1994) J Ferment Bioeng 77:679CrossRefGoogle Scholar
  25. 25.
    Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM, Lettinga G (1995) J Ferment Bioeng 80:499CrossRefGoogle Scholar
  26. 26.
    Björnsson L (2000) Intensification of the biogas process by improved process monitoring and biomass retention, Dissertation, Lund University, Lund, SwedenGoogle Scholar
  27. 27.
    Zinder SH (1993) Physiology and ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry and genetics. Chapman and Hall, New YorkGoogle Scholar
  28. 28.
    Moosbrugger RE, Wentzel MC, Ekama GA, Marais GR (1993) Water SA 19:11Google Scholar
  29. 29.
    Mosey FE, Fernandes XA (1989) Water Science and Technology 21:187Google Scholar
  30. 30.
    Wilcox SJ, Hawkes DL, Guwy AJ (1995) Wat Res 29:1470CrossRefGoogle Scholar
  31. 31.
    Angelidaki I, Ahring BK (1994) Water Res 28:727CrossRefGoogle Scholar
  32. 32.
    Rozzi A (1991) Med Fac Landbouww Rijksuniv Gent 56:1499Google Scholar
  33. 33.
    Pretorius WA (1994) Water Science and Technology 30:1Google Scholar
  34. 34.
    Speece RE (1983) Environ Sci Technol 17:416CrossRefGoogle Scholar
  35. 35.
    Angelidaki I, Ahring BK (1993) Appl Microbiol Biotechnol 38:560CrossRefGoogle Scholar
  36. 36.
    Bhattacharya SK, Parkin GF (1989) J WPCF 61:55Google Scholar
  37. 37.
    Sprott GD, Shaw KM, Jarrell KF (1984) J Biol Chem 259:12602Google Scholar
  38. 38.
    Sprott GD, Patel GB (1986) System Appl Microbiol 7:358Google Scholar
  39. 39.
    Hansen KH, Angelidaki I, Ahring BK (1998) Wat Res 32:5CrossRefGoogle Scholar
  40. 40.
    Koster IW (1986) J Chem Tech Biotechnol 36:445Google Scholar
  41. 41.
    Hansen KH, Angelidaki I, Ahring BK (1999) Wat Res 33:1805CrossRefGoogle Scholar
  42. 42.
    Kayhanian M, Tchobanoglous G (1992) Biocycle 33:58Google Scholar
  43. 43.
    Hamzawi N, Kennedy KJ, McLean DD (1998) Environ Technol 19:993CrossRefGoogle Scholar
  44. 44.
    Angelidaki I, Ahring BK (1998) Biodegradation 8:221CrossRefGoogle Scholar
  45. 45.
    Imai T, Ukita M, Sekine M, Nakanishi H, Fukagawa M (1998) Water Science and Technology 38:377CrossRefGoogle Scholar
  46. 46.
    Angelidaki I, Ahring BK (1992) Appl Microbiol Biotechnol 37:808CrossRefGoogle Scholar
  47. 47.
    Rinzema A, Boone M, van Knippenberg K, Lettinga G (1994) Wat Environ Res 66:40Google Scholar
  48. 48.
    Hickey RF,V anderwielen J, Switzenbaum MS (1987) Wat Res 21:1417CrossRefGoogle Scholar
  49. 49.
    Mol N, Kut OM, Dunn IJ (1993) Water Science and Technology 28:55Google Scholar
  50. 50.
    Hickey RF,V anderwielen J, Switzenbaum MS (1989) Wat Res 23:207CrossRefGoogle Scholar
  51. 51.
    Hendriksen HV, Larsen S, Ahring BK (1992) Appl Environ Microbiol 58:365Google Scholar
  52. 52.
    Wu WM, Bhatnagar L, Zeikus JG (1993) Appl Environ Microbiol 59:389Google Scholar
  53. 53.
    Donlon BA, Razo-Flores E, Lettinga G, Field JA (1996) Biotechnol Bioeng 51:439CrossRefGoogle Scholar
  54. 54.
    Bradley PM (2000) Hydrobiol J 8:104Google Scholar
  55. 55.
    Christansen N, Christensen SR, Arvin E, Ahring BK (1997) Appl Microbiol Biotechnol 47:91CrossRefGoogle Scholar
  56. 56.
    Zhuang P, Pavlostathis SG (1994) Water Sci Technol 30:85Google Scholar
  57. 57.
    Hörber CH, Christansen N, Arvin E, Ahring BK (1998) Appl Environ Microbiol 64:1860Google Scholar
  58. 58.
    Donlon BA, Razo-Flores E, Luijten M, Swarts H, Lettinga G, Field JA (1997) Appl Microbiol Biotechnol 47:83CrossRefGoogle Scholar
  59. 59.
    Bendixen HJ (1996) Copenhagen 1: 296Google Scholar
  60. 60.
    Ahring BK, Angelidaki I, Johansen K (1992) Water Sci Technol 25:311Google Scholar
  61. 61.
    Hedegaard M, Jaensch V (1999) Renewable Energy 16:1064CrossRefGoogle Scholar
  62. 62.
    IEA Bioenergy (1994) Minister of Energy/Danish Energy Agency, Copenhagen, DenmarkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Irini Angelidaki
    • 1
  • Lars Ellegaard
    • 2
  • Birgitte Kiœr Ahring
    • 3
  1. 1.Environment & ResourcesThe Technical University of DenmarkLyngbyDenmark
  2. 2.BWSCAllerødDenmark
  3. 3.Environmental Microbiology & Biotechnology, BiocentrumThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations