Molecular Biology of Stress Genes in Methanogens: Potential for Bioreactor Technology

  • Everly Conway de Macario
  • Alberto J. L. Macario
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 81)


Many agents of physical, chemical, or biological nature, have the potential for causing cell stress. These agents are called stressors and their effects on cells are due to protein denaturation. Cells, microbes, for instance, perform their physiological functions and survive stress only if they have their proteins in the necessary concentrations and shapes. To be functional a protein shape must conform to a specific three-dimensional arrangement, named the native configuration. When a stressor (e.g., temperature elevation or heat shock, decrease in pH, hypersalinity, heavy metals) hits a microbe, it causes proteins to lose their native configuration, which is to say that stressors cause protein denaturation. The cell mounts an anti-stress response: house-keeping genes are down-regulated and stress genes are activated. Among the latter are the genes that produce the Hsp70(DnaK), Hsp60, and small heat protein (sHsp) families of stress proteins. Hsp70(DnaK) is part of the molecular chaperone machine together with Hsp40(DnaJ) and GrpE, and Hsp60 is a component of the chaperonin complex. Both the chaperone machine and the chaperonins play a crucial role in assisting microbial proteins to reach their native, functional configuration and to regain it when it is partially lost due to stress. Proteins that are denatured beyond repair are degraded by proteases so they do not accumulate and become a burden to the cell. All Archaea studied to date possess chaperonins but only some methanogens have the chaperone machine. A recent genome survey indicates that Archaea do not harbor well conserved equivalents of the co-chaperones trigger factor, Hip, Hop, BAG-1, and NAC, although the data suggest that Archaea have proteins related to Hop and to the NAC alpha subunit whose functions remain to be elucidated. Other anti-stress means involve osmolytes, ion traffic, and formation of multicellular structures. All cellular anti-stress mechanisms depend on genes whose products are directly involved in counteracting the effects of stressors, or are regulators. The latter proteins monitor and modulate gene activity. Biomethanation depends on the concerted action of at least three groups of microbes, the methanogens being one of them. Their anti-stress mechanisms are briefly discussed in this Chapter from the standpoint of their role in biomethanation with emphasis on their potential for optimizing bioreactor performance. Bioreactors usually contain stressors that come with the influent, or are produced during the digestion process. If the stressors reach levels above those that can be dealt with by the anti-stress mechanisms of the microbes in the bioreactor, the microbes will die or at least cease to function. The bioreactor will malfunction and crash. Manipulation of genes involved in the anti-stress response, particularly those pertinent to the synthesis and regulation of the Hsp70(DnaK) and Hsp60 molecular machines, is a promising avenue for improving the capacity of microbes to withstand stress, and thus to continue biomethanation even when the bioreactor is loaded with harsh waste. The engineering of methanogenic consortia with stress-resistant microbes, made on demand for efficient bioprocessing of stressor-containing effluents and wastes, is a tangible possibility for the near future. This promising biotechnological development will soon become a reality due to the advances in the study of the stress response and anti-stress mechanisms at the molecular and genetic levels.


Stress Stress genes Methanogens Anti-stress mechanisms Multicellular structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macario AJL, Conway de Macario E (2000) Heat-shock response, overview. In: Fink G (ed), The encyclopedia of stress. Academic Press, San Diego, California, USA, Vol 2, p 350Google Scholar
  2. 2.
    Macario AJL, Conway de Macario E (2000) Chaperone proteins. In: Fink G (ed), The Encyclopedia of Stress. Academic Press, San Diego, California, USA, Vol 1, p 429Google Scholar
  3. 3.
    Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, Maurizi MR (1990) Proc Natl Acad Sci USA 87:3513CrossRefGoogle Scholar
  4. 4.
    Herman C, D’Ari R (1998) Curr Op Microbiol 1:204CrossRefGoogle Scholar
  5. 5.
    Wickner S, Maurizi MR, Gottesman S (1999) Science 286:1888CrossRefGoogle Scholar
  6. 6.
    Hartl FU, Martin J (1995) Curr Op Struct Biol 5:92CrossRefGoogle Scholar
  7. 7.
    Klumpp M, Baumeister W (1998) FEBS Lett 430:73CrossRefGoogle Scholar
  8. 8.
    Macario AJL, Conway de Macario E (1999) Genetics 152:1277Google Scholar
  9. 9.
    Netzer WJ, Hartl FU (1998) Trends Biochem Sci 23:68CrossRefGoogle Scholar
  10. 10.
    Ranson NA, White HE, Saibil HR (1998) Biochem J 333:233Google Scholar
  11. 11.
    Willison KR (1999) Composition and function of the eukaryotic cytosolic chaperonincontaining TCP-1. In: Bukau B (ed), Molecular chaperones and folding catalysis. Harwood Academic Publishers, Sydney, Australia, p 555Google Scholar
  12. 12.
    Macario AJL, Lange M, Ahring BK, Conway de Macario E (1999) Microbiol Mol Biol Rev 63:923Google Scholar
  13. 13.
    Holden J, Adams MWW, Baross JA (2000). Heat-shock response in hyperthermophilic microorganisms. In: Bell CR, Brylinsky M, Johnson-Green P (eds), Microbial biosystems: New frontiers. Atlantic Canada Society for Microbial Ecology, Acadia University, Wolfville, Nova Scotia, Canada, p 663Google Scholar
  14. 14.
    Hofman-Bang JP, Lange M, Conway de Macario E, Macario AJL, Ahring BK (1999) Gene 218:387CrossRefGoogle Scholar
  15. 15.
    Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJL, Conway de Macario E (1993) Appl Environ Microbiol 59:2538Google Scholar
  16. 16.
    Clarens M, Cairó JJ, Paris, JM, Macario AJL, Conway de Macario E (1993) Curr Microbiol 26:167CrossRefGoogle Scholar
  17. 17.
    Schmidt JE, Ahring BK (1996) Biotechnol Bioeng 49:229CrossRefGoogle Scholar
  18. 18.
    Schmidt JE, Macario AJL, Ahring BK, Conway de Macario E (1992) Appl Environ Microbiol 58:862Google Scholar
  19. 19.
    Zinder, S (1993) Physiological ecology of methanogens. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p 128Google Scholar
  20. 20.
    Madigan MT, Martinko JM, Parker J (2000). Brock Biology of microorganisms, 9th edn. Prentice-Hall Inc, Upper Saddle River, New Jersey, USAGoogle Scholar
  21. 21.
    Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Microbiol Rev 43:260Google Scholar
  22. 22.
    Woese CR (1987) Microbiol Rev 51:221Google Scholar
  23. 23.
    Woese CR (1998) Curr Biol 8:R781CrossRefGoogle Scholar
  24. 24.
    Woese CR, Kandler O, Wheelis ML (1990) Proc Natl Acad Sci USA 87:4576CrossRefGoogle Scholar
  25. 25.
    Boone DR, Whitman W B, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p35Google Scholar
  26. 26.
    Macario AJL, Conway de Macario E (2000) Heat resistance. In: Fink G (ed), The encyclopedia of stress. Academic Press, San Diego, California, USA, Vol 2, p 338Google Scholar
  27. 27.
    Bustard K, Gupta RS (1997) J Mol Evol 45:193CrossRefGoogle Scholar
  28. 28.
    Csermely P, Schnaider T, Sôti C, Prohászka Z, Nardai G (1998) Pharmacol Ther 79:129CrossRefGoogle Scholar
  29. 29.
    Fisher G, Tradler T, Zarnt Z (1998) FEBS Lett 426:17CrossRefGoogle Scholar
  30. 30.
    Galat A (1999) Arch Biochem Biophys 371:149CrossRefGoogle Scholar
  31. 31.
    Gupta RS (1995) Mol Microbiol 15:1CrossRefGoogle Scholar
  32. 32.
    Gupta RS, Singh B (1994) Curr Biol 4:1104CrossRefGoogle Scholar
  33. 33.
    Kim KK, Kim R, Kim S-H (1998) Nature 394:595CrossRefGoogle Scholar
  34. 34.
    Kim R, Kim KK, Yokota H, Kim S-H (1998) Proc Natl Acad Sci USA 95:9129CrossRefGoogle Scholar
  35. 35.
    Lee GJ, Vierling E (2000) Plant Physiol 122:189CrossRefGoogle Scholar
  36. 36.
    Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) J Biol Chem 274:15712CrossRefGoogle Scholar
  37. 37.
    Conway de Macario E, Macario AJL (1994) Trends Biotechnol 12:512CrossRefGoogle Scholar
  38. 38.
    Archibald JM, Logsdon Jr JM, Doolittle WF (1999) Curr Biol 9:1053CrossRefGoogle Scholar
  39. 39.
    Gribaldo S, Lumia V, Creti R, Conway de Macario E, Sanangelantoni A, Cammarano P (1999) JBacteriol 181:434Google Scholar
  40. 40.
    Gupta RS (1998) Microbiol Mol Biol Rev 62:1435Google Scholar
  41. 41.
    Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds), (1995) Archaea. A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, New York, USAGoogle Scholar
  42. 42.
    Sprott GD, Beveridge TJ (1993) Microscopy. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p 81Google Scholar
  43. 43.
    Pfanner N (1999) Curr Biol 9:R720CrossRefGoogle Scholar
  44. 44.
    Arsene F, Tomoyasu T, Mogk A, Schirra C, Schulze-Specking A, Bukau B (1999) J Bacteriol 181:3552Google Scholar
  45. 45.
    Blaszczak A, Georgopoulos C, Liberek K (1999) Mol Microbiol 31:157CrossRefGoogle Scholar
  46. 46.
    Morimoto RI (1998) Genes Dev 12:3788CrossRefGoogle Scholar
  47. 47.
    Glover JR, Lindquist S (1998) Cell 94:73CrossRefGoogle Scholar
  48. 48.
    Weber-Ban EU, Reid BG, Miranker AD, Horwich AL (1999) Nature 401:90CrossRefGoogle Scholar
  49. 49.
    Zolkiewski M (1999) J Biol Chem 274:28083CrossRefGoogle Scholar
  50. 50.
    Korber P, Zander T, Herschlag D, Bardwell JCA (1999) J Biol Chem 274:249CrossRefGoogle Scholar
  51. 51.
    Bogdanov M, Dowhan W (1999) J Biol Chem 274:36827CrossRefGoogle Scholar
  52. 52.
    Wang Y-Y, Chen X, Oh H-J, Repasky E, Kazim L, Subjeck J (2000) FEBS Lett 465:98CrossRefGoogle Scholar
  53. 53.
    Angelidaki I, Ahring BK (1994) Wat Res 28:727CrossRefGoogle Scholar
  54. 54.
    Angelidaki I, Petersen SP, Ahring BK (1990) Appl Microbiol Biotechnol 33:469CrossRefGoogle Scholar
  55. 55.
    Koster IW, Koomen E (1988) Appl Microbiol Biotechnol 28:500CrossRefGoogle Scholar
  56. 56.
    Koster IW, Lettinga G (1988) Biological Wastes 25:51CrossRefGoogle Scholar
  57. 57.
    Macario AJL, Dugan CB, Conway de Macario E (1991) Gene 108:133CrossRefGoogle Scholar
  58. 58.
    Macario AJL, Conway de Macario E (1997) Stress 1:123CrossRefGoogle Scholar
  59. 59.
    Clarens M, Macario AJL, Conway de Macario E (1995) J Mol Biol 250:191CrossRefGoogle Scholar
  60. 60.
    Conway de Macario E, Clarens M, Macario AJL (1995) J Bacteriol 177:544Google Scholar
  61. 61.
    Conway de Macario E, Dugan CB, Macario AJL (1994) J Mol Biol 240:95CrossRefGoogle Scholar
  62. 62.
    Conway de Macario E, Macario AJL (1995) J Bacteriol 177:6077Google Scholar
  63. 63.
    Lange M, Macario AJL, Ahring BK, Conway de Macario E (1997) Curr Microbiol 35: 116CrossRefGoogle Scholar
  64. 64.
    Macario AJL, Simon VH, Conway de Macario E (1995) Biochim Biophys Acta 1264:173Google Scholar
  65. 65.
    Hanawa T, Kai M, Kamiya S, Yamamoto T (2000) Cell Stress Chap 5:21CrossRefGoogle Scholar
  66. 66.
    Macario AJL, Dugan CB, Conway de Macario E, (1993) Biochim Biophys Acta 1216: 495Google Scholar
  67. 67.
    Lange M, Macario AJL, Ahring BK, Conway de Macario E (1997) FEMS Microbiol Lett 152:379CrossRefGoogle Scholar
  68. 68.
    Kobayashi HA, Conway de Macario E, Williams RS, Macario AJL (1988) Appl Environ Microbiol 54:693Google Scholar
  69. 69.
    Macario AJL, Conway de Macario E (1988) Appl Environ Microbiol 54:79Google Scholar
  70. 70.
    Macario AJL, Conway de Macario E, Ney U, Schoberth AM, Sahm H (1989) Appl Environ Microbiol 55:1996Google Scholar
  71. 71.
    Macario AJL, Earle JFK, Chynoweth DP, Conway de Macario E (1989) Syst Appl Microbiol 12:216Google Scholar
  72. 72.
    Zellner G, Geveke M, Conway de Macario E, Diekmann H (1991) Appl Microbiol Biotechnol 36:404CrossRefGoogle Scholar
  73. 73.
    Zellner G, Macario AJL, Conway de Macario E (1996) Appl Microbiol Biotechnol 46: 443CrossRefGoogle Scholar
  74. 74.
    Koornneef E, Macario AJL, Grotenhuis JTC, Conway de Macario E (1990) FEMS Microbiol Ecol 73:225CrossRefGoogle Scholar
  75. 75.
    Visser FA, van Lier JB, Macario AJL, Conway de Macario E (1991) Appl Environ Microbiol 57:1728Google Scholar
  76. 75a.
    Macario AJL, Conway de Macario E (2001) Frontiers in Bioscience 6:262–283 CrossRefGoogle Scholar
  77. 76.
    Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Cell 93:125CrossRefGoogle Scholar
  78. 77.
    Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W (1998) Nature Struc Biol 5:855CrossRefGoogle Scholar
  79. 78.
    Beveridge TJ, Stewart M, Doyle RJ, Sprott GC (1985) J Bacteriol 162:728Google Scholar
  80. 79.
    Da Costa MS, Santos H, Galinski EA (1998) Adv Biochem Eng Biotechnol 61:118Google Scholar
  81. 80.
    Hensel R, Koenig H (1988) FEMS Microbiol Lett 49:75CrossRefGoogle Scholar
  82. 81.
    Martin DD, Ciulla RA, Roberts MF (1999) Appl Environ Microbiol 65:1815Google Scholar
  83. 82.
    Nakamura T, Yamamuro N, Stumpe S, Unemoto T, Bakker EP (1998) Microbiology 144:2281Google Scholar
  84. 83.
    Schlösser A, Hamann A, Bossemeyer D, Schneider E, Bakker EP (1993) Mol Microbiol 9:533CrossRefGoogle Scholar
  85. 84.
    Sprott G, Patel G (1986) Syst Appl Microbiol 7:358Google Scholar
  86. 85.
    Geissler S, Siegers K, Schiebel E (1998) EMBO J 17:952CrossRefGoogle Scholar
  87. 86.
    Leroux M, Faendrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) EMBO J 18:6730CrossRefGoogle Scholar
  88. 87.
    Vainberg IE, Lewis SA, Roemmelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Cell 93:863CrossRefGoogle Scholar
  89. 88.
    Furutani M, Iida T, Yamano S, Kamino K, Maruyama T (1998) J Bacteriol 180:388Google Scholar
  90. 89.
    Herdegen T, Fisher G, Gold BG (2000) Trends Pharmacol Sci (TiPS) 21:3CrossRefGoogle Scholar
  91. 90.
    Iida T, Furutani M, Nishida F, Maruyama T (1998) Gene 222:249CrossRefGoogle Scholar
  92. 91.
    Baumeister W, Walz J, Zuehl F, Seemueller E (1998) Cell 92:367CrossRefGoogle Scholar
  93. 92.
    DeMartino GN, Slaughter CA (1999) J Biol Chem 274:22123CrossRefGoogle Scholar
  94. 93.
    Maupin-FurlowJA, AldrichHC, Ferry JG (1998) J Bacteriol 180:1480Google Scholar
  95. 94.
    Maupin-Furlow JA, Ferry JG (1995) J Biol Chem 270:28617CrossRefGoogle Scholar
  96. 95.
    Zwickel P, Ng D, Woo KM, Klenk H-P, Goldberg AL (1999) J Biol Chem 274:26008CrossRefGoogle Scholar
  97. 96.
    Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Plant Physiol 121:45CrossRefGoogle Scholar
  98. 97.
    Mayerhofer LE, Macario AJL, Conway de Macario E (1992) J Bacteriol 174:3009Google Scholar
  99. 98.
    Yao R, Macario AJL, Conway de Macario E (1992) J Bacteriol 174:4683Google Scholar
  100. 99.
    Zellner G, Feuerhake E, Joerdening H-J, Macario AJL, Conway de Macario E (1995) Appl Microbiol Biotechnol 43:566CrossRefGoogle Scholar
  101. 100.
    Zellner G, Macario AJL, Conway de Macario E (1997) FEMS Microbiol Ecol 22:295CrossRefGoogle Scholar
  102. 101.
    Macario AJL, Visser FA, van Lier JB, Conway de Macario E (1991) J Gen Microbiol 137:2179Google Scholar
  103. 102.
    Garberi JC, Macario AJL, Conway de Macario E (1985) J Bacteriol 16:1Google Scholar
  104. 103.
    Koenig H (1988) Can J Microbiol 34:395CrossRefGoogle Scholar
  105. 104.
    Howgrave-Graham AR, Macario AJL, Wallis FM (1997) J Appl Microbiol 83:587CrossRefGoogle Scholar
  106. 105.
    Ney U, Macario AJL, Conway de Macario E, Aivasidis A, Schoberth SM, Sahm H (1990) Appl Environ Microbiol 56:2389Google Scholar
  107. 106.
    Conway de Macario E, Macario AJL (1997) FEMS Microbiol Rev 20:59Google Scholar
  108. 107.
    Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Intl J Syst Bacteriol 47:1068CrossRefGoogle Scholar
  109. 108.
    Kotelnikova S, Macario AJL, Pedersen K (1998) Intl J Syst Bacteriol 48:357Google Scholar
  110. 109.
    Sieburth JMcN, Johnson PW, Macario AJL, Conway de Macario E (1993) Mar Ecol Prog Ser 95:81CrossRefGoogle Scholar
  111. 110.
    Conway de Macario E, Macario AJL, Pastini A (1985) Arch Microbiol 142:311CrossRefGoogle Scholar
  112. 111.
    Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Microbiology 144:2655CrossRefGoogle Scholar
  113. 112.
    Haney P J, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Proc Natl Acad Sci USA 96:3578CrossRefGoogle Scholar
  114. 113.
    Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (1998) Biochimie 80:933CrossRefGoogle Scholar
  115. 114.
    Conway de Macario E, Guerrini M, Dugan CB, Macario AJL (1996) J Mol Biol 262:12CrossRefGoogle Scholar
  116. 115.
    Metcalf WM, Zhang JK, Apolinario E, Sowers KR, Wolfe RS (1997) Proc Natl Acad Sci USA 94:2626CrossRefGoogle Scholar
  117. 116.
    Metcalf WW, Zhang JK, Wolfe RS (1998) Appl Environ Microbiol 64:768Google Scholar
  118. 117.
    Tumbula DL, Whitman WB (1999) Mol Microbiol 33:1CrossRefGoogle Scholar
  119. 118.
    Macario AJL, Conway de Macario E (1993) Manipulation and mapping of microbes with antibodies. In: Guerrero R, Pedros-Alio C (eds), Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, Spain, p 505Google Scholar
  120. 119.
    Ahring BK, Christiansen N, Mathrani I, Hendriksen HV, Macario AJL, Conway de Macario E (1992) Appl Environ Microbiol 58:3677Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Everly Conway de Macario
    • 1
    • 2
  • Alberto J. L. Macario
    • 1
    • 2
  1. 1.Division of Molecular Medicine, New York State Department of HealthWadsworth CenterUSA
  2. 2.Department of Biomedical Sciences, School of Public HealthThe University at Albany (SUNY)AlbanyUSA

Personalised recommendations