From ASA Towards the Full Potential

  • J. Kollár
  • L. Vitos
  • H.L. Skriver
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 535)


To combine the simplicity and effciency of atomic-sphere approximation (ASA) based electronic structure calculations and the accuracy of full potential techniques, we have developed a full charge-density (FCD) method. In this method the charge density is obtained from the output of self-consistent linear muffin-tin orbitals (LMTO) ASA calculations, the Coulomb energy is calculated exactly from the complete, nonspherically symmetric charge density defined within nonoverlapping, space-filling Wigner-Seitz cells, and the exchange-correlation energy is evaluated by means of the local density approximation or the generalized gradient approximation applied to the complete charge-density. The kinetic energy is obtained as the ASA kinetic energy corrected for the nonspherically symmetric charge-density by a gradient expansion. The integration over the Wigner-Seitz cell is carried out by means of the shape truncation function technique, which is also discussed in detail. The FCD technique retains most of the simplicity and computational effciency of the LMTO-ASA method, while several tests for bulk metals and surfaces show that the accuracy of the method is similar to that of full potential methods.


Charge Density Generalize Gradient Approximation Local Density Approximation Coulomb Energy Multipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.K. Andersen, Solid State Commun. 13, 133 (1973).CrossRefADSGoogle Scholar
  2. 2.
    O.K. Andersen and R.G. Wolley, Mol. Phys. 26, 905 (1973).CrossRefADSGoogle Scholar
  3. 3.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefADSGoogle Scholar
  4. 4.
    A.R. William, J. Kübler, and C.D. Gelatt, Phys. Rev. B 19, 6094 (1979).CrossRefADSGoogle Scholar
  5. 5.
    H.L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984).Google Scholar
  6. 6.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefADSGoogle Scholar
  7. 7.
    O.K. Andersen, O. Jepsen, and D. Glötzel, in Highlights of Condensed-Matter Theory, edited by F. Bassani, F. Fumi, and M. P. Tosi (North Holland, New York, 1985).Google Scholar
  8. 8.
    W.R.L Lambrecht and O.K. Andersen, Phys. Rev. B 34, 2439(1986).CrossRefADSGoogle Scholar
  9. 9.
    O.K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B 34, 5253 (1986).CrossRefADSGoogle Scholar
  10. 10.
    G.W. Fernando, B.R. Cooper, M.V. Ramana, H. Krakauer, and C.Q. Ma, Phys. Rev. Lett. 56, 2299 (1986).CrossRefADSGoogle Scholar
  11. 11.
    J.M. Wills and B.R. Cooper, Phys. Rev. B 36, 3809(1987).CrossRefADSGoogle Scholar
  12. 12.
    M. Springborg and O.K. Andersen, J. Chem. Phys. 87, 7125 (1987).CrossRefADSGoogle Scholar
  13. 13.
    M. Methfessel, Phys. Rev. B 38, 1537 (1988).CrossRefADSGoogle Scholar
  14. 14.
    M. Methfessel, C.O. Rodriguez, and O.K. Andersen, Phys. Rev. B 40, 2009 (1989).CrossRefADSGoogle Scholar
  15. 15.
    S. Savrasov and D. Savrasov, Phys. Rev. B 46, 12181 (1992).CrossRefADSGoogle Scholar
  16. 16.
    P. Hohenberg and W. Kohn, Phys. Rev. 136B 864 (1964).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    L. Vitos, J. Kollár and H. L. Skriver, Phys. Rev. B 49, 16694 (1994).CrossRefADSGoogle Scholar
  18. 18.
    J. Kollár, L. Vitos, and H. L. Skriver, Phys. Rev. B 49, 11288 (1994).CrossRefADSGoogle Scholar
  19. 19.
    J. Kollár, L. Vitos and H. L. Skriver, NATO ASI Series, Vol.41, ed. P. A. Sterne, A. Gonis and A. A. Borovoi, p.97 (1998)Google Scholar
  20. 20.
    L. Vitos, J. Kollár, and H. L. Skriver, Phys. Rev. B 55, 4947 (1997).CrossRefADSGoogle Scholar
  21. 21.
    J. Kollár, L. Vitos and H. L. Skriver, Phys. Rev. B 55, 15353 (1997).CrossRefADSGoogle Scholar
  22. 22.
    L. Vitos, J. Kollár, and H. L. Skriver, Phys. Rev. B 55, 13521 (1997).CrossRefADSGoogle Scholar
  23. 23.
    L. Vitos, A.V. Ruban, H. L. Skriver and J. Kollár, Surface Sci. 411, 186 (1998)CrossRefADSGoogle Scholar
  24. 24.
    L. Vitos, A.V. Ruban, H. L. Skriver and J. Kollár, Phil. Mag. 78, 487 (1998)Google Scholar
  25. 25.
    O.K. Andersen, O. Jepsen, and G. Krier, in Methods of Electronic Structure Calculations, edited by V. Kumar, O.K. Andersen, and A. Mookerjee (World Scientific, Singapore, 1994), p. 63.Google Scholar
  26. 26.
    W. Kohn and L.J. Sham, Phys. Rev. 140 A1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    A.E. DePristo and J.D. Kress, Phys. Rev. A 35, 438 (1987).CrossRefADSGoogle Scholar
  28. 28.
    R.M. Dreizler and E.K.U. Gross, Density Functional Theory, (Springer-Verlag, 1990).Google Scholar
  29. 29.
    J. D. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig, Academic Verlag, Berlin, p. 11 (1991).Google Scholar
  30. 30.
    O.K. Andersen, O. Jepsen and M. Sob, in Electronic Band Structure and its Applications, ed. M. Yussou. (Springer Lecture Notes, 1987).Google Scholar
  31. 31.
    P. Söderlind, O. Eriksson, J.M. Wills and A.M. Boring, Phys. Rev. B 48, 5844, (1993)CrossRefADSGoogle Scholar
  32. 32.
    J.van W. Morgan, J. Phys. C, 10, 1181 (1977)CrossRefADSGoogle Scholar
  33. 33.
    A. Gonis, E. C. Sowa and P. A. Sterne, Phys. Rev. Lett. 66, 2207 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    L. Vitos and J. Kollár, Phys. Rev. B 51, 4074, (1995).CrossRefADSGoogle Scholar
  35. 35.
    O.K. Andersen, A.V. Postnikov and S.Yu. Savrasov, in Applications of Multiple Scattering Theory to Materials Science, Eds. W.H. Butler, P.H. Dederichs, A. Gonis and R.L. Weaver, MRS Symp. Proc. p.37 (1992)Google Scholar
  36. 36.
    R. Ahuja, S. Auluck, T. Trygg, J. M. Wills, O. Eriksson, and B. Johansson, Phys. Rev. B 51, 4813 (1995).CrossRefADSGoogle Scholar
  37. 37.
    L. Vitos, J. Kollár, and H. L. Skriver in NATO ASI Series B:Physics, Stability of Materials, ed. A. Gonis, P.E.A. Turchi and J. Kudrnovsky, p. 393, Plenum Press, New York (1996).Google Scholar
  38. 38.
    B. Drittler, M. Weinert, R. Zeller and P. H. Dederichs, Solid State Commun. 79, 31, (1991)CrossRefADSGoogle Scholar
  39. 39.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics, Ed. by E. Wigner and R. Hofstadter, Princeton University Press, Princeton, (1957)Google Scholar
  40. 40.
    N. Stefanou, H. Akai and R. Zeller, Comput. Phys. Comun. 60,231 (1990)CrossRefADSGoogle Scholar
  41. 41.
    J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefADSGoogle Scholar
  42. 42.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefADSGoogle Scholar
  43. 43.
    F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, 1988).Google Scholar
  44. 44.
    H.L. Skriver and N. M. Rosengaard, Phys. Rev. B 46, 7157 (1992).CrossRefADSGoogle Scholar
  45. 45.
    J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefADSGoogle Scholar
  46. 46.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  47. 47.
    M. T. Yin, Marvin. L. Cohen, Phys. Rev. B 29, 6996 (1984).CrossRefADSGoogle Scholar
  48. 48.
    E.W. Pearson, and R.G. Gordon, J. Chem. Phys. 82, 881 (1985)CrossRefADSGoogle Scholar
  49. 49.
    L. Vitos, H. L. Skriver, and J. Kollár, Phys. Rev. B 57, 12611 (1998).CrossRefADSGoogle Scholar
  50. 50.
    N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. Kollár
    • 1
  • L. Vitos
    • 1
    • 2
  • H.L. Skriver
    • 3
  1. 1.Research Institute for Solid State PhysicsHungary
  2. 2.Condensed Matter Theory Group Physics DepartmentUppsala UniversityUppsalaSweden
  3. 3.Center for Atomic-scale Materials Physics and Department of PhysicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations