Full-Potential LMTO Total Energy and Force Calculations

  • J. M. Wills
  • O. Eriksson
  • M. Alouani
  • D. L. Price
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 535)


The essential features of a full potential electronic structure method using Linear Muffin-Tin Orbitals (LMTOs) are presented. The electron density and potential in the this method are represented with no inherent geometrical approximation. This method allows the calculation of total energies and forces with arbitrary accuracy while sacrificing much of the efficiency and physical content of approximate methods such as the LMTO-ASA method.


Coulomb Potential Atomic Position Spherical Wave Principal Quantum Number Reciprocal Lattice Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1988), and references therein.CrossRefADSGoogle Scholar
  2. 2.
    H. L. Skriver, The LMTO method (Springer-Verlag, Berlin, 1984).Google Scholar
  3. 3.
    J. M. Wills (unpublished); J. M. Wills and B. Cooper, Phys. Rev. B 36, 389 (1987).Google Scholar
  4. 4.
    M. Springborg and O. K. Andersen, J. Chem. Phys. 87, 7125, (1987).CrossRefADSGoogle Scholar
  5. 5.
    M. Methfessel, Phys. Rev. B 38, 1537 (1988).CrossRefADSGoogle Scholar
  6. 6.
    K. H. Weyrich, Phys. Rev. B 37, 10269 (1987).CrossRefADSGoogle Scholar
  7. 7.
    S. Savrasov and D. Savrasov, Phys. Rev. B 46, 12181 (1992).CrossRefADSGoogle Scholar
  8. 8.
    M. Tischer, O. Hjortstam, D. Arvanitis, J. Hunter Dunn, F. May, K. Baberschke, J. Trygg, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. Lett. 75, 1602, (1995); O. Hjortstam, J. Trygg, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 53, 9204, (1996).CrossRefADSGoogle Scholar
  9. 9.
    J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, (New York, 1978).Google Scholar
  10. 10.
    J. Korringa, Physica 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J. M. Wills, O. Eriksson, and A. M. Boring, Phys. Rev. Lett. 67, 2215 (1991); M. Alouani, R.C. Albers, J. M. Wills, and M. Springborg, Phys. Rev. Lett. 69, 3104, (1992), M. Alouani, J. W. Wilkins, R.C. Albers, and J. M. Wills, ibid., 71, 1415 (1993); M. Alouani and J. M. Wills, Phys. Rev. B 54, 2480 (1996); R. Ahuja et al., ibid. 55, 4999 (1996).CrossRefADSGoogle Scholar
  12. 12.
    M. Weinert, J. Math. Phys. 22, 2433 (1980).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    C. Lanczos, Applied Analysis, Dover Publications Inc., New York, 1988.Google Scholar
  14. 14.
    A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, 1974.Google Scholar
  15. 15.
    R. Yu, D. Singh, and H. Krakauer, Phys. Rev. B43, 6411 (1991).CrossRefADSGoogle Scholar
  16. 16.
    G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S.-W. Cheong, J. Phys. Chem. 97, 2368 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. M. Wills
    • 1
  • O. Eriksson
    • 2
  • M. Alouani
    • 3
  • D. L. Price
    • 4
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Uppsala UniversityUppsalaSweden
  3. 3.IPCMSStrasbourgFrance
  4. 4.University of MemphisMemphisUSA

Personalised recommendations