On the Implementation of the Self-Interaction Corrected Local Spin Density Approximation for d- and f-Electron Systems

  • W. M. Temmerman
  • A. Svane
  • Z. Szotek
  • H. Winter
  • S. V. Beiden
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 535)


The ab-initio self-interaction corrected (SIC) local-spin-density (LSD) approximation is elaborated upon, with emphasis on the ability to describe localization phenomena in solids. Two methods for minimizing the SIC-LSD total energy functional are considered, one using an unified Hamiltonian for all electron states, thus having the advantages of Bloch’s theorem, the other one employing an iterative scheme in real space. Moreover, an extension of the formalism to the relativistic case is discussed. Results for NiO, cerium and cerium compounds are presented. For NiO a significant charge transfer gap is produced, in contrast to the near vanishing band gap seen in the LSD approximation. Also, the magnetic moment is larger in the SIC-LSD approach than in the LSD approach. For the cerium compounds, the intricate isostructural phase transitions in elemental cerium and cerium pnictides may be accurately described. A sizeable orbital moment for elemental cerium metal is obtained which, upon lattice expansion, is seen to reach the atomic limit.


Orbital Moment Coulomb Correlation Hole Pocket Bloch State Cerium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964): W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).CrossRefADSGoogle Scholar
  3. 3.
    W. Pickett, Rev. Mod. Phys. 61, 433 (1989).CrossRefADSGoogle Scholar
  4. 4.
    N. F. Mott, “Metal-Insulator Transitions” (Taylor and Francis, London, 1974).Google Scholar
  5. 5.
    B. Brandow, Adv. Phys. 26, 651 (1977); J. Alloys and Compounds, 181, 377 (1992).CrossRefADSGoogle Scholar
  6. 6.
    K. Terakura, A. R. Williams, T. Oguchi and J. Kübler, Phys. Rev. Lett. 52, 1830 (1984); Phys. Rev. B30, 4734 (1984).CrossRefADSGoogle Scholar
  7. 7.
    J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).CrossRefADSGoogle Scholar
  8. 8.
    V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44, 943 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    B. Johansson, Phil. Mag. 30, 469 (1974).CrossRefADSGoogle Scholar
  10. 10.
    J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106 (1982); J. W. Allen and L. Z. Liu, Phys. Rev. B 46, 5047 (1992).CrossRefADSGoogle Scholar
  11. 11.
    D. Glötzel, J. Phys. F 8, L163 (1978); D. Glötzel and R. Podloucky, Physica 102B, 348 (1980).CrossRefGoogle Scholar
  12. 12.
    H. L. Skriver, O. K. Andersen and B. Johansson, Phys. Rev. Lett. 44, 1230 (1980).CrossRefADSGoogle Scholar
  13. 13.
    J. Hubbard, Proc. R. Soc. London A276, 238 (1963); A277, 237 (1964); A281 401 (1964)CrossRefADSGoogle Scholar
  14. 14.
    V. I. Anisimov, F. Aryasetiawan and A. I. Liechtenstein, J. Phys.: Condens. Matter, 9, 767 (1997).CrossRefADSGoogle Scholar
  15. 15.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981); A. Svane, Phys. Rev. B51, 7924 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    J. Taylor, “Scattering Theory”, (Wiley, New York, 1972).Google Scholar
  17. 17.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    J. G. Harrison, R. A. Heaton and C. C. Lin, J. Phys. B 16, 2079 (1983).ADSGoogle Scholar
  19. 19.
    H. L. Skriver, “The LMTO Method” (Springer Verlag, Berlin, 1984).Google Scholar
  20. 20.
    A. Svane, Phys. Rev. B53, 4275 (1996).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    O. K. Andersen, O. Jepsen and O. Glötzel, “Canonical description of the band structures of metals”, in Proc. of Int. School of Physics, Course LXXXIX, Varenna, 1985, ed. by F. Bassani, F. Fumi and M. P. Tosi (North-Holland, Amsterdam, 1985), p. 59.Google Scholar
  22. 22.
    H. Ebert, Phys. Rev. B38, 9390 (1988).ADSMathSciNetCrossRefGoogle Scholar
  23. 24.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, Z. Szotek, W.M. Temmerman, and A.P. Sutton, Phys. Stat. Sol. (a) 166, 429 (1998).CrossRefADSGoogle Scholar
  24. 25.
    M. D. Towler, N. L. Allan, N. M. Harrison, V. R. Saunders, W. C. Mackrodt and E. Apra, Phys. Rev. B50, 5041 (1994).ADSCrossRefGoogle Scholar
  25. 26.
    T. Sasaki, Phys. Rev. B54, R9581 (1996).ADSCrossRefGoogle Scholar
  26. 27.
    G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).CrossRefADSGoogle Scholar
  27. 28.
    Z. Szotek, W. M. Temmerman and H. Winter, Phys. Rev. Lett. 72, 1244 (1994).CrossRefADSGoogle Scholar
  28. 29.
    A. Svane, Phys. Rev. Lett. 72, 1248 (1994).CrossRefADSGoogle Scholar
  29. 30.
    W.M. Temmerman, A. Svane, Z. Szotek and H. Winter, in ”Electronic Density Functional Theory: Recent Progress and New Directions”, Eds. J.F. Dobson, G. Vignale and M.P. Das, Plenum Press, New York, 1998.Google Scholar
  30. 31.
    S.V. Beiden, W.M. Temmerman, Z. Szotek and G.A. Gehring, Phys. Rev. Lett. 79, 3970 (1997).CrossRefADSGoogle Scholar
  31. 33.
    I. Vedel, A. M. Redon, J. Rossat-Mignod, O. Vogt and J. M. Leger, J. Phys. C 20, 3439, (1987).CrossRefADSGoogle Scholar
  32. 34.
    N. Mori, Y. Okayama, H. Takahashi, Y. Haga and T. Suzuki, Physica B186–188, 444 (1993).Google Scholar
  33. 35.
    A. Werner, H. D. Hochheimer, R. L. Meng and E. Bucher, Physics Lett. 97A, 207, (1983).CrossRefADSGoogle Scholar
  34. 36.
    J. M. Leger, D. Ravot and J. Rossat-Mignod, J. Phys. C 17, 4935, (1984).CrossRefADSGoogle Scholar
  35. 37.
    J. M. Leger, K. Oki, J. Rossat-Mignod and O. Vogt, J. de Physique 46, 889, (1985).CrossRefGoogle Scholar
  36. 38.
    A. Svane, Z. Szotek, W.M. Temmerman and H. Winter, Solid State Commun. 102, 473 (1997).CrossRefADSGoogle Scholar
  37. 39.
    A. Svane, Z. Szotek, W.M. Temmerman, J. Lægsgaard and H. Winter, J. Phys. Condens. Matter 10, 5309 (1998).CrossRefADSGoogle Scholar
  38. 40.
    F. Hulliger, M. Landolt, H. R. Ott and R. Schmelczer, J. Low Temp. Phys. 20, 269 (1975).CrossRefADSGoogle Scholar
  39. 41.
    Y. Okayama, Y. Ohara, S. Mituda, H. Takahashi, H. Yoshizawa, T. Osakabe, M. Kohgi, Y. Haga, T. Suzuki and N. Mori, Physica B186–188, 531 (1993).Google Scholar
  40. 42.
    T. Chattopadhyay, Science 264, 226 (1994).CrossRefADSGoogle Scholar
  41. 43.
    M. Kohgi, T. Osakabe, K. Kakurai, T. Suzuki, Y. Haga, and T. Kasuya, Phys. Rev. B49, 7068 (1994).ADSCrossRefGoogle Scholar
  42. 44.
    Y. Haga, A. Uesawa, T. Terashima, S. Uji, H. Aoki, Y. S. Kwon, and T. Suzuki, Physica B206–207, 792 (1995).Google Scholar
  43. 45.
    T. Terashima, S. Uji, H. Aoki, W. Joss, Y. Haga, A. Uesawa, and T. Suzuki, Phys. Rev. B 55, 4197 (1997).ADSCrossRefGoogle Scholar
  44. 46.
    H. Kumigashira, S.-H. Yang, T. Yokoya, A. Chainani, T. Takahashi, A. Uesawa and T. Suzuki, Phys. Rev. B 55, R3355 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • W. M. Temmerman
    • 1
  • A. Svane
    • 2
  • Z. Szotek
    • 1
  • H. Winter
    • 3
  • S. V. Beiden
    • 4
    • 5
  1. 1.Daresbury LaboratoryDaresburyWarringtonUK
  2. 2.Institute of Physics and AstronomyUniversity of AarhusAarhus CDenmark
  3. 3.Forschungszentrum KarlsruheINFPKarlsruheGermany
  4. 4.Department of PhysicsUniversity of SheffieldSheffieldUK
  5. 5.Department of PhysicsUniversity of West VirginiaWest VirginiaUSA

Personalised recommendations