Advertisement

Ab Initio Theory of the Interlayer Exchange Coupling

  • J. Kudrnovský
  • V. Drchal
  • I. Turek
  • P. Bruno
  • P. Dederichs
  • P. Weinberger
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 535)

Abstract

Ab initio formulations of the interlayer exchange coupling (IEC) between two, in general non-collinearly aligned magnetic slabs embedded in a non-magnetic spacer are reviewed whereby both the spacer and the magnetic slabs as well as their interfaces may be either ideal or random. These formulations are based on the spinpolarized surface Green function technique within the tight-binding linear muffin-tin orbital method, the Lloyd formulation of the IEC, and the coherent potential approximation using the vertex-cancellation theorem. We also present an effective method for the study of the temperature dependence of the IEC. The periods, amplitudes, and phases are studied in terms of discrete Fourier transformations, the asymptotic behavior of the IEC is briefly discussed within the stationary-phase method. Numerical results illustrating the theory are presented.

Keywords

Green Function Fermi Surface Magnetic Layer Interlayer Coupling Coherent Potential Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bruno, Phys. Rev. B 52, 411 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    J. Mathon, M. Villeret, A. Umerski, R.B. Muniz, J. d’Albuquerque e Castro, and D.M. Edwards, Phys. Rev. B 56, 11797 (1997).CrossRefGoogle Scholar
  3. 4.
    M. van Schilfgaarde, F. Herman, S.S.P. Parkin, and J. Kudrnovský, Phys. Rev. Lett. 74, 4063 (1995).CrossRefADSGoogle Scholar
  4. 5.
    M. van Schilfgaarde and F. Herman, Phys. Rev. Lett. 71, 1923 (1993).CrossRefADSGoogle Scholar
  5. 6.
    S. Mirbt, H.L. Skriver, M. Aldén, and B. Johansson, Solid State Commun. 88, 331 (1993).CrossRefADSGoogle Scholar
  6. 7.
    M.D. Stiles, Phys. Rev. B 48, 7238 (1993).ADSCrossRefGoogle Scholar
  7. 8.
    A. Oswald, R. Zeller, P.J. Braspenning, and P.H. Dederichs, J. Phys. F: Met. Phys. 15, 193 (1985).CrossRefADSGoogle Scholar
  8. 9.
    A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).CrossRefADSGoogle Scholar
  9. 10.
    A.R. Mackintosh and O.K. Andersen, in Electrons at the Fermi Surface, Ch. 5.3., ed. M. Springford (Cambridge University Press, Cambridge, England, 1980).Google Scholar
  10. 11.
    P. Lloyd and P.V. Smith, Adv. Phys. 21, 69 (1972).CrossRefADSGoogle Scholar
  11. 12.
    P. Lang, L. Nordström, R. Zeller, and P.H. Dederichs, Phys. Rev. Lett. 71, 1927 (1993).CrossRefADSGoogle Scholar
  12. 13.
    J. Kudrnovský, V. Drchal, I. Turek, and P. Weinberger, Phys. Rev. B 50, 16105 (1994).CrossRefGoogle Scholar
  13. 14.
    V. Drchal, J. Kudrnovský, I. Turek, and P. Weinberger, Phys. Rev. B 53, 15036 (1996).CrossRefGoogle Scholar
  14. 15.
    P. Bruno, J. Kudrnovský, V. Drchal, and I. Turek, Phys. Rev. Lett. 76, 4254 (1996).CrossRefADSGoogle Scholar
  15. 16.
    V. Drchal, J. Kudrnovský, P. Bruno, and P. Weinberger, Phil. Mag. B 78, 571 (1998).CrossRefGoogle Scholar
  16. 17.
    V. Drchal, J. Kudrnovský, P. Bruno, P.H. Dederichs, and P. Weinberger, (to be submitted).Google Scholar
  17. 18.
    J. Kudrnovský, V. Drchal, I. Turek, M. Šob, and P. Weinberger, Phys. Rev. B 53, 5125 (1996).ADSCrossRefGoogle Scholar
  18. 19.
    J. Kudrnovský, V. Drchal, P. Bruno, I. Turek, and P. Weinberger, Phys. Rev. B 54, R3738 (1996).CrossRefADSGoogle Scholar
  19. 20.
    J. Kudrnovský, V. Drchal, C. Blass, I. Turek, and P. Weinberger, Phys. Rev. Lett. 76, 3834 (1996).CrossRefADSGoogle Scholar
  20. 21.
    J. Kudrnovský, V. Drchal, R. Coehoorn, M. Šob, and P. Weinberger, Phys. Rev. Lett. 78, 358 (1997).Google Scholar
  21. 22.
    P. Bruno, J. Kudrnovský, V. Drchal, and I. Turek, J. Magn. Magn. Mater. 165, 128 (1997).CrossRefADSGoogle Scholar
  22. 23.
    J. Kudrnovský, V. Drchal, P. Bruno, I. Turek, and P. Weinberger, Phys. Rev. B 56, 8919 (1997).ADSCrossRefGoogle Scholar
  23. 24.
    J. Kudrnovský, V. Drchal, P. Bruno, R. Coehoorn, J.J. de Vries, K. Wildberger, P.H. Dederichs, and P. Weinberger, MRS Symposium Proceedings, eds. J. Tolbin et al., Vol. 475, 575 (1997).Google Scholar
  24. 25.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefADSGoogle Scholar
  25. 26.
    I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, Boston-London-Dordrecht, 1997)Google Scholar
  26. 28.
    V. Drchal, J. Kudrnovský, L. Udvardi, P. Weinberger, and A. Pasturel, Phys. Rev. B 45, 14328 (1992).CrossRefGoogle Scholar
  27. 30.
    P. Lang, L. Nördstrom, K. Wildberger, R. Zeller, and P.H. Dederichs, Phys. Rev. B 53, 9092 (1996).ADSCrossRefGoogle Scholar
  28. 31.
    F. Ducastelle, J. Phys. C: Solid State Phys. 8, 3297 (1975).CrossRefADSGoogle Scholar
  29. 32.
    L. Szunyogh, B. Újfalussy, P. Weinberger, and C. Sommers, Phys. Rev. B 54, 6430 (1996).ADSCrossRefGoogle Scholar
  30. 33.
    B. Wenzien, J. Kudrnovský, V. Drchal, and M. Šob, J. Phys.: Condens. Matter 1, 9893 (1989).CrossRefADSGoogle Scholar
  31. 34.
    J. Kudrnovský, I. Turek, V. Drchal, P. Weinberger, N.E. Christensen, and S.K. Bose, Phys. Rev. B 46, 4222 (1992).ADSCrossRefGoogle Scholar
  32. 35.
    J. Kudrnovský, I. Turek, V. Drchal, P. Weinberger, S.K. Bose, and A. Pasturel, Phys. Rev. B 47, 16525 (1993).CrossRefGoogle Scholar
  33. 36.
    V. Drchal, J. Kudrnovský, and I. Turek, Comp. Phys. Commun. 97, 111 (1996).CrossRefADSGoogle Scholar
  34. 37.
    P. Weinberger, Phil. Mag. B 75, 509 (1997).CrossRefMathSciNetGoogle Scholar
  35. 38.
    J. Zabloudil, C. Uiberacker, U. Pustogowa, B. Blaas, L. Szunyogh, C. Sommers, and P. Weinberger, Phys. Rev. B 57, 7804 (1998).ADSCrossRefGoogle Scholar
  36. 39.
    J.C. Slonczewski, Phys. Rev. B 39, 6995 (1989).ADSCrossRefGoogle Scholar
  37. 40.
    D.M. Edwards, A.M. Robinson, and J. Mathon, J. Mag. Mag. Mat. 140–144, 517 (1995).Google Scholar
  38. 41.
    C. Blaas, P. Weinberger, L. Szunyogh, J. Kudrnovský, V. Drchal, P.M. Levy, and C. Sommers (submitted to J. Phys. I France).Google Scholar
  39. 42.
    E.M. Godfrin, J. Phys.: Condens. Matter 3, 7843 (1991).CrossRefADSGoogle Scholar
  40. 43.
    P. Weinberger, I. Turek, and L. Szunyogh, Int. J. Quant. Chem. 63, 165 (1997).CrossRefGoogle Scholar
  41. 44.
    M.S. Ferreira, J. Phys. Condens. Matter 9, 6665 (1997).CrossRefADSGoogle Scholar
  42. 45.
    J. d’Albuquerque e Castro, J. Mathon, M. Villeret, and A. Umerski, Phys. Rev. B 53, R13306 (1996).CrossRefGoogle Scholar
  43. 46.
    C. Lanczos, Applied Analysis, (Dover, New York, 1988), p. 219.Google Scholar
  44. 47.
    P. Bruno, J. Magn. Magn. Mater. 164, 27 (1996).CrossRefADSGoogle Scholar
  45. 48.
    S. Krompiewski, F. Süss, and U. Krey, Europhys. Lett. 26, 303 (1994).CrossRefADSGoogle Scholar
  46. 49.
    L. Nördstrom, P. Lang, R. Zeller, and P.H. Dederichs, Phys. Rev. B 50, 13058 (1994).CrossRefGoogle Scholar
  47. 50.
    P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. Kudrnovský
    • 1
    • 2
  • V. Drchal
    • 1
    • 2
  • I. Turek
    • 3
    • 2
  • P. Bruno
    • 4
  • P. Dederichs
    • 5
  • P. Weinberger
    • 2
  1. 1.Institute of PhysicsAcademy of Sciences of the Czech RepublicCzech Republic
  2. 2.Center for Computational Materials ScienceTechnical UniversityViennaAustria
  3. 3.Institute of Physics of MaterialsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  4. 4.Max-Planck Institut für MikrostrukturphysikHalleGermany
  5. 5.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations