Advertisement

Absolute Conservation Law for Black Holes

  • Daniel Grumiller
Conference paper
  • 751 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 543)

Abstract

The spherically reduction of the 4d Einstein-Hilbert action reduces to a 2d dilaton theory[1], which can be shown to be equivalent to a first order action (with nonvanishing torsion)[2] being a special case of a Poisson-σ model[3].

References

  1. 1.
    P. Thomi, B. Isaak and P. Hajicek, Phys. Rev. D 30 (1984) 1168; P. Hajicek, ibid. D 30 (1984) 1178; S.R. Lau, Class. Quant. Grav. 13 (1996) 1541.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    M.O. Katanaev, W. Kummer and H. Liebl, Phys. Rev. D 53 (1996) 5609; W. Kummer, H. Liebl and D. V. Vassilevich, Nucl. Phys. B 493 (1997) 491.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    N. Ikeda and K-I. Izawa, Progr. Theor. Phys. 89 (1993) 1.; P. Schaller and T. Strobl, Mod. Phys. Lett. A 9 (1994) 3129.; T. Strobl, Phys. Rev. D 50 (1994) 7346.; T. Klösch and T. Strobl, Class. Quant. Grav. 13 (1996) 965.; W. Kummer and D. Schwarz, Phys. Rev. D 45 (1992) 3628.CrossRefGoogle Scholar
  4. 4.
    W. Kummer and P. Widerin, Phys. Rev. D 52 (1995) 6965.; W. Kummer and G. Tieber, Universal conservation law and modified Noether symmetry in 2d models of gravity with matter, TUW-98-16, hep-th/9807122 (to be published in Phys. Rev. D).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    D. Grumiller, W. Kummer, Absolute conservation law for black holes, gr-qc/9902074Google Scholar
  6. 6.
    C. Gundlach, Adv. Theor. Math. Phys. 2 (1998) 1; M. W. Choptuik, The (unstable) threshold of black hole formation, gr-qc/9803075.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Daniel Grumiller
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria

Personalised recommendations