Advertisement

Actions for Duality-Symmetric Fields

  • Dmitri Sorokin
Conference paper
  • 745 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 543)

Abstract

The problem of constructing models described by duality-invariant actions has a rather long history. It goes back to time when Poincaré and later on Dirac noticed electric-magnetic duality symmetry of the free Maxwell equations, and, Dirac (1931) assumed the existence of magnetically charged particles (monopoles and dyons) admitting the duality symmetry to be also held for the Maxwell equations in the presence of charged sources. To describe monopoles and dyons on an equal footing with electrically charged particles one should have a duality-symmetric form of the Maxwell action. In 1971 Zwanziger constructed such an action. An alternative duality- symmetric Maxwell action was proposed by Deser and Teitelboim in 1976. The two actions, which proved to be dual to each other by Maznytsia et. al. (1998), are not manifestly Lorentz-invariant. This feature turned out to be a general one. Duality and space-time symmetries hardly coexist in one and the same action.

Keywords

Maxwell Equation Covariant Action Covariant Approach Duality Symmetry Chiral Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dirac, P. A. M. (1931): Proc. R. Soc. A133, 60; (1948): Phys. Rev. 74, 817.CrossRefADSGoogle Scholar
  2. Zwanziger, D. (1971): Phys. Rev. D3, 880.ADSMathSciNetGoogle Scholar
  3. Maznytsia, A., Preitschopf, C. R. and Sorokin, D. (1998): Nucl. Phys. B539, 438.ADSMathSciNetGoogle Scholar
  4. Deser, S. and Teitelboim, C.(1976): Phys. Rev. D13, 1592.ADSMathSciNetGoogle Scholar
  5. Floreanini, R. and Jackiw, R. (1987): Phys. Rev. Lett. 59, 1873.CrossRefADSGoogle Scholar
  6. Henneaux, M. and Teitelboim, C. (1988): Phys. Lett. B206, 650.ADSGoogle Scholar
  7. Tseytlin, A. (1990): Phys. Lett. B242, 163 (1990).ADSMathSciNetGoogle Scholar
  8. Schwarz, J. H. and Sen, A. (1994): Nucl. Phys. B411, 35.CrossRefADSMathSciNetGoogle Scholar
  9. Siegel, W. Nucl. Phys. B238, 307 (1984).CrossRefADSGoogle Scholar
  10. McClain, B., Wu, Y. S. and Yu, F. (1990): Nucl. Phys. B343, 689.CrossRefADSMathSciNetGoogle Scholar
  11. Pasti, P., Sorokin D. and Tonin, M. (1995): Phys. Lett. B352, 59; Phys. Rev. D52, R4277; (1997): Phys. Rev. D55, 6292.ADSGoogle Scholar
  12. Pasti, P., Sorokin D. and Tonin, M. (1997): Phys. Lett. 398B, 41 (1997); Bandos, I. et. al. (1997): Phys. Rev. Lett. 78, 4332.ADSMathSciNetGoogle Scholar
  13. Aganagic, et. al. (1997): Nucl. Phys. B496, 191.CrossRefADSMathSciNetGoogle Scholar
  14. Bandos, I. Berkovits N. and Sorokin, D. (1998): Nucl. Phys. B522, 214.CrossRefADSMathSciNetGoogle Scholar
  15. Dall’Agata, G., Lechner, K. and Sorokin, D. (1997): Class. Quant. Grav. 14, L195; Dall’Agata, G., Lechner, K. and Tonin, M. (1998): JHEP 9807, 017.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Dmitri Sorokin
    • 1
    • 2
  1. 1.Humboldt-Universität zu BerlinInstitut für PhysikBerlinGermany
  2. 2.Alexander von Humboldt fellowKharkov Institute of Physics and TechnologyKharkovUkraine

Personalised recommendations