An Introduction to Noncommutative Geometry

  • J. Madore
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 543)


A review is made of some recent results in noncommutative geometry, including its use as a regularization procedure. Efforts to add a gravitational field to noncommutative models of space-time are also reviewed. Special emphasis is placed on the case which could be considered as the noncommutative analogue of a parallelizable space-time.


Tensor Product Dirac Operator Quantum Group Minkowski Space Noncommutative Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ackermann, T., Tolksdorf, J. (1996) A generalized Lichnerowicz formula, the Wodzicki Residue and Gravity, J. Geom. Phys. 19 143.zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    Aghamohammadi, A. (1993) The two-parametric extension of h deformation of GL(2) and the differential calculus on its quantum plane, Mod. Phys. Lett. A 8 2607.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    Aghamohammadi, A., Khorrami, M., Shariati, A. (1995) h-deformation as a contraction of q-deformation, J. Phys. A: Math. Gen. 28 L225.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    Ambjørn, J., Jonsson, T. (1997) Quantum Geometry, a statistical field theory approach, Cambridge University Press.Google Scholar
  5. [5]
    Aschieri, P., Castellani, L. (1996) Bicovariant calculus on twisted ISO(N), Quantum Poincaré Group and Quantum Minkowski Space, Int. J. Mod. Phys. A 11 4513.ADSMathSciNetGoogle Scholar
  6. [6]
    de Azcárraga, J.A., Kulish, P.P., Rodenas, F. (1997) Twisted h-spacetimes and invariant equations, Z. Physik C 76 567.Google Scholar
  7. [7]
    Baez, J.C., Muniain, J.P. (1994) Gauge Fields, Knots, and Gravity, (Series on Knots and Everything, Vol. 4) World Scientific.Google Scholar
  8. [8]
    Balachandran, A.P., Bimonte, G., Landi, G., Lizzi, F., Teotonio-Sobrinho, P. (1998) Lattice Gauge Fields and Noncommutative Geometry, J. Geom. Phys. 24 353.zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. [9]
    Balakrishna, B.S., Gürsey, F., Wali, K.C. (1991) Towards a Unified Treatment of Yang-Mills and Higgs Fields, Phys. Rev. D44 3313.ADSGoogle Scholar
  10. [10]
    Banks, T., Fischler, W., Shenker, S.H. Susskind, L. (1997) M Theory as a Matrix Model: a Conjecture, Phys. Rev. D555112.ADSMathSciNetGoogle Scholar
  11. [11]
    Bellissard, J., van Elst, A., Schulz-Baldes, H. (1994) The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35 5373.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    Bimonte, G., Lizzi, F., Sparano, G. (1994) Distances on a Lattice from Noncommutative Geometry, Phys. Lett. B341 139.ADSMathSciNetGoogle Scholar
  13. [13]
    Carow-Watamura, U., Watamura, S. (1997) Chirality and Dirac Operator on Noncommutative Sphere, Comm. Math. Phys. 183 365.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    Cerchiai, B.L., Wess, J. q-Deformed Minkowski Space based on a q-Lorentz Algebra, Munich Preprint LMU-TPW 98/02, q-alg/9801104.Google Scholar
  15. [15]
    Cerchiai, B.L., Hinterding, R., Madore, J. Wess, J. The Geometry of a q-deformed Phase Space, Euro. J. of Phys. C (to appear).Google Scholar
  16. [16]
    —A calculus Based on a q-deformed Heisenberg Algebra, Euro. J. of Phys. C (to appear).Google Scholar
  17. [17]
    Chaichian, M., Demichev, A., Prešnajder, P., Quantum Field Theory on Noncommutative Space-Times and the Persistence of Ultraviolet Divergences, Helsinki Preprint HIP-1998-77/TH, hep-th/9812180.Google Scholar
  18. [18]
    Chamseddine, A.H., Felder, G., Fröhlich, J. (1993) Gravity in Non-Commutative Geometry, Comm. Math. Phys. 155 205.zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    Chamseddine, A.H., Connes, A. (1996) Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model, Phys. Rev. Lett. 77 4868.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. [20]
    Chamseddine, A.H., Fröhlich, J., Grandjean, O. (1995) The gravitational sector in the Connes-Lott formulation of the standard model, J. Math. Phys. 36 6255.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. [21]
    Chapline, G., Manton, N.S. (1980) The Geometrical Significance of Certain Higgs Potentials: An approach to grand unification, Nucl. Phys. B184 391.ADSGoogle Scholar
  22. [22]
    Cho, S., Madore, J., Park, K.S. (1998) Non-commutative Geometry of the h-deformed Quantum Plane, J. Phys. A: Math. Gen. 31 2639.zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. [23]
    Cho, S., Hinterding, R., Madore, J. Steinacker, H. Finite Field Theory on Noncommutative Geometries, Munich Preprint, LMU-TPW 99-06, hep-th/9903239.Google Scholar
  24. [24]
    Chu, Chong-Sun, Ho, Pei-Ming, Zumino, B. Some Complex Quantum Manifolds and their Geometry, Lectures given at NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, Cargese, France, 1996, hep-th/9608188.Google Scholar
  25. [25]
    Connes, A. (1986) Non-Commutative Differential Geometry, Publications of the Inst. des Hautes Etudes Scientifiques 62 257.Google Scholar
  26. [26]
    —(1988) The Action Functional in Non-Commutative Geometry, Comm. Math. Phys. 117 673.Google Scholar
  27. [27]
    — (1994) Noncommutative Geometry, Plenum Press.Google Scholar
  28. [28]
    — (1995) Noncommutative geometry and reality, J. Math. Phys. 36 6194.Google Scholar
  29. [29]
    (1996) Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 192 155.Google Scholar
  30. [30]
    Connes, A., Lott, J. (1990) Particle Models and Noncommutative Geometry, in’ Recent Advances in Field Theory‘, Nucl. Phys. B (Proc. Suppl.) 18 29.MathSciNetGoogle Scholar
  31. [31]
    — (1992) The metric aspect of non-commutative geometry, Proceedings of the 1991 Cargèse Summer School, Plenum Press.Google Scholar
  32. [32]
    Connes, A., Rieffel, M.A. (1987) Yang-Mills for non-commutative two-tori, Contemp. Math. 62 237.MathSciNetGoogle Scholar
  33. [33]
    Connes, A., Douglas, M.R., Schwarz, A. (1998) Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys. 02 003.CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    Coquereaux, R. (1989) Noncommutative geometry and theoretical physics, J. Geom. Phys. 6 425.zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. [35]
    Cuntz, A., Quillen, D. (1995) Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 251.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Dabrowski, L., Hajac, P.M., Landi, G. Siniscalco, P. (1996) Metrics and pairs of left and right connections on bimodules, J. Math. Phys. 37 4635. Nucl. Phys.B3051988545.zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. [37]
    Dimakis, A., Madore, J. (1996) Differential Calculi and Linear Connections, J. Math. Phys. 37 4647.zbMATHCrossRefADSMathSciNetGoogle Scholar
  38. [38]
    Dimakis, A., Müller-Hoissen, F. (1993) A Noncommutative Differential Calculus and its Relation to Gauge theory and Gravitation, Int. J. Mod. Phys. A 3 474.Google Scholar
  39. [39]
    — (1994) Discrete Differential Calculus, Graphs, Topologies and Gauge Theory, J. Math. Phys. 35 6703.CrossRefADSGoogle Scholar
  40. [40]
    Dirac, P.A.M. (1926) The Fundamental Equations of Quantum Mechanics, Proc. Roy. Soc. A109 642; (1926) On Quantum Algebras, Proc. Camb. Phil. Soc. 23 412.Google Scholar
  41. [41]
    Doplicher, S., Fredenhagen, K., Roberts, J.E. (1995) The Quantum Structure of Spacetime at the Planck Scale and Quantum Fields, Comm. Math. Phys. 172 187.zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. [42]
    Dubois-Violette, M., Kerner, R., Madore, J. (1989) Gauge bosons in a noncommutative geometry, Phys. Lett. B217 485.ADSMathSciNetGoogle Scholar
  43. [43]
    Dubois-Violette, M., Madore, J., Masson, T. Mourad, J. (1995) Linear Connections on the Quantum Plane, Lett. Math. Phys. 35 351.zbMATHCrossRefMathSciNetADSGoogle Scholar
  44. [44]
    — (1996) On Curvature in Noncommutative Geometry, J. Math. Phys. 37 4089.CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A. (1990) Quantization of Lie Groups and Lie Algebras, Leningrad Math. J. 1 193.zbMATHMathSciNetGoogle Scholar
  46. [46]
    Fichtmüller, M., Lorek, A., Wess, J. (1996) q-Deformed Phase Space and its Lattice Structure, Z. Physik C 71 533.ADSGoogle Scholar
  47. [47]
    Filk, T. (1996) Divergences in a field theory on quantum space, Phys. Lett. B376 53.ADSMathSciNetGoogle Scholar
  48. [48]
    Fiore, G., Madore, J. Leibniz Rules and Reality Conditions, Preprint 98-13, Dip. Matematica e Applicazioni, Università di Napoli, q-alg/9806071.Google Scholar
  49. [49]
    — The Geometry of the Quantum Euclidean Space, Munich Preprint LMU-TPW 97-23, q-alg/9904027.Google Scholar
  50. [50]
    Forgács, P., Manton, N.S. (1980) Space-Time Symmetries in Gauge Theories, Comm. Math. Phys. 72 15.CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    Fröhlich, J., Grandjean, O., Recknagel, A. Supersymmetric quantum theory, non-commutative geometry and gravitation, Lecture Notes, Les Houches 1995, hep-th/9706132.Google Scholar
  52. [52]
    Gambini, R., Pullin, J., Ashtekar, A. (1996) Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge University Press.Google Scholar
  53. [53]
    Ganor, O.J., Ramgoolam, S., Taylor, W. (1997) Branes, Fluxes and Duality in M(atrix)-Theory, Nucl. Phys. B492 191.CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    Garay, L.J. (1995) Quantum Gravity and Minimum Length, Int. J. Mod. Phys. A 10145.ADSGoogle Scholar
  55. [55]
    Grosse, H., Madore, J. (1992) A Noncommutative Version of the Schwinger Model, Phys. Lett. B283 218.ADSMathSciNetGoogle Scholar
  56. [56]
    Grosse, H., Prešnajder, P. (1993) The Construction of Noncommutative Manifolds Using Coherent States, Lett. Math. Phys. 28 239.zbMATHCrossRefMathSciNetADSGoogle Scholar
  57. [57]
    — (1995) The Dirac Operator on the Fuzzy Sphere, Lett. Math. Phys. 33 171.CrossRefADSGoogle Scholar
  58. [58]
    Grosse, H., Reiter, G. The Fuzzy Supersphere, ESI Preprint, math-ph/9804013.Google Scholar
  59. [59]
    Grosse, H., Klimčík, C., Prešnajder, P. (1996) Towards Finite Quantum Field Theory in noncommutative Geometry, Int. J. Theor. Phys. 35 231.zbMATHCrossRefGoogle Scholar
  60. [60]
    — (1997) Field Theory on a Supersymmetric Lattice, Comm. Math. Phys. 185 155.CrossRefGoogle Scholar
  61. [61]
    Hebecker, A., Schreckenberg, S., Schwenk, J. Weich, W., Wess, J. (1994) Representations of a q-deformed Heisenberg algebra, Z. Physik C 64 355.MathSciNetGoogle Scholar
  62. [62]
    Hellund, E.J., Tanaka, K. (1954) Quantized Space-Time, Phys. Rev. 94 192.zbMATHCrossRefADSMathSciNetGoogle Scholar
  63. [63]
    Kaku, M. (1987) Generally Covariant Lattices, the Random Calculus, and the Strong Coupling Approach to the Renormalisation of Gravity, Quantum Field Theory and Quantum Statistics, Volume 2, I.A. Batalin, C.J. Isham and G.A. Vilkovisky (Ed.), Adam Hilger, Bristol.Google Scholar
  64. [64]
    Kalau, W., Walze, M. (1995) Gravity, Non-Commutative Geometry and the Wodzicki Residue, J. Geom. Phys. 16 327.zbMATHCrossRefMathSciNetADSGoogle Scholar
  65. [65]
    Kastler, D. (1993) A detailed account of Alain Connes’ version of the standard model in non-commutative geometry, Rev. Mod. Phys. 5 477.zbMATHMathSciNetGoogle Scholar
  66. [66]
    — (1999) Noncommutative Geometry and Fundamental Physical Interactions, Proceedings of the 38. Internationale Universitätswochen für Kern-und Teilchen-physik, ‘Geometrie und Quantenphysik’, Schladming, Austria, Eds. H. Gausterer, H. Grosse, L. Pittner, Lecture Notes in Physics, Springer-Verlag.Google Scholar
  67. [67]
    Kastler, D., Madore, J., Testard, D. (1997) Connections of bimodules in noncommutative geometry, Contemp. Math. 203 159.MathSciNetGoogle Scholar
  68. [68]
    Kehagias, A., Madore, J., Mourad, J. Zoupanos, G. (1995) Linear Connections in Extended Space-Time, J. Math. Phys. 36 5855.zbMATHCrossRefADSMathSciNetGoogle Scholar
  69. [69]
    Kempf, A., Mangano, G. (1997) Minimal Length Uncertainty Relation and Ultraviolet Regularization, Phys. Rev. D55 7909.ADSGoogle Scholar
  70. [70]
    Kempf, A., Mangano, G., Mann, R.B. (1995) Hilbert Space Representation of the Minimal Length Uncertainty Relation, Phys. Rev. D52 1108.ADSMathSciNetGoogle Scholar
  71. [71]
    Khorrami, M., Shariati, A., Aghamohammadi, A. (1997) SL h(2)-Symmetric Torsionless Connections, Lett. Math. Phys. 40 95.zbMATHCrossRefMathSciNetGoogle Scholar
  72. [72]
    Krajewski, T. (1998) Classification of Finite Spectral Triples, J. Geom. Phys. 28 1.zbMATHCrossRefMathSciNetADSGoogle Scholar
  73. [73]
    Krajewski, T., Wulkenhaar, R. Perturbative Quantum Gauge Fields on the Noncommutative Torus, Marseille preprint CPT-99/P.3794, hep-th/9903187.Google Scholar
  74. [74]
    Kosinski, P., Lukierski, J., Maslanka, P. Local D = 4 Field Theory on k-Deformed Minkowski Space, Preprint, hep-th/9902037.Google Scholar
  75. [75]
    Koszul, J.L. (1960) Lectures on Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay.Google Scholar
  76. [76]
    Kupershmit, B.A. (1992) The quantum group GLh(2), J. Phys. A: Math. Gen. 25 L1239.CrossRefADSGoogle Scholar
  77. [77]
    Landi, G. (1997) An Introduction to Noncommutative Spaces and their Geometries, Springer Lecture Notes, Springer-Verlag.Google Scholar
  78. [78]
    Landi, G., Nguyen, Ai Viet, Wali, K.C. (1994) Gravity and electromagnetism in noncommutative geometry, Phys. Lett. B326 45.ADSGoogle Scholar
  79. [79]
    Leitenberger, F. (1996) Quantum Lobachevsky Planes, J. Math. Phys. 37 3131.zbMATHCrossRefADSMathSciNetGoogle Scholar
  80. [80]
    Lizzi, F., Mangano, G., Miele, G. Sparano, G. (1996) Constraints on Unified Gauge Theories from Noncommutative Geometry, Mod. Phys. Lett. A 11 2561.ADSMathSciNetGoogle Scholar
  81. [81]
    Madore, J. (1989) Kaluza-Klein Aspects of Noncommutative Geometry, Proceedings of the XVII International Conference on Differential Geometric Methods in Theoretical Physics, Chester, August, 1988. World Scientific.Google Scholar
  82. [82]
    — (1990) Modification of Kaluza-Klein Theory, Phys. Rev. D41 3709.Google Scholar
  83. [83]
    — (1991) The Commutative Limit of a Matrix Geometry, J. Math. Phys. 32 332; (1992) The Fuzzy Sphere, Class. and Quant. Grav. 9 69.Google Scholar
  84. [84]
    — (1992) Fuzzy Physics, Ann. Phys. 219 187.Google Scholar
  85. [85]
    — (1999) An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press, 1995; 2nd Edition.Google Scholar
  86. [86]
    Madore, J., Mourad, J. (1993) Algebraic-Kaluza-Klein Cosmology, Class. and Quant. Grav. 10 2157.zbMATHCrossRefADSMathSciNetGoogle Scholar
  87. [87]
    — (1995) On the Origin of Kaluza-Klein Structure, Phys. Lett. B359 43.ADSMathSciNetGoogle Scholar
  88. [88]
    — Noncommutative Kaluza-Klein Theory, Lecture given at the 5th Hellenic School and Workshops on Elementary Particle Physics, hep-th/9601169.Google Scholar
  89. [89]
    — (1998) Quantum Space-Time and Classical Gravity, J. Math. Phys. 39 423.CrossRefADSMathSciNetGoogle Scholar
  90. [90]
    Madore, J., Masson, T., Mourad, J. (1995) Linear Connections on Matrix Geometries, Class. and Quant. Grav. 12 1429.zbMATHCrossRefADSMathSciNetGoogle Scholar
  91. [91]
    Madore, J., Mourad, J., Sitarz, A. (1997) Deformations of Differential Calculi, Mod. Phys. Lett. A 12 975.ADSMathSciNetGoogle Scholar
  92. [92]
    Madore, J., Saeger, L.A. (1998) Topology at the Planck Length, Class. and Quant. Grav. 15 811.zbMATHCrossRefADSMathSciNetGoogle Scholar
  93. [93]
    Majid, S. (1993) Braided Momentum in the q-Poincaré group, J. Math. Phys. 34 2045zbMATHCrossRefADSMathSciNetGoogle Scholar
  94. [94]
    Majid, S. (1995) Foundations of Quantum Group Theory, Cambridge University Press.Google Scholar
  95. [95]
    Manin, Yu.I. (1988) Quantum Groups and Non-commutative Geometry, Les Publications du Centre de Recherche Mathématiques, Montréal.Google Scholar
  96. [96]
    — (1989) Multiparametric Quantum Deformations of the General Linear Supergroup, Comm. Math. Phys. 123 163.Google Scholar
  97. [97]
    Manton, N.S. (1979) A New Six-Dimensional Approach to theWeinberg-Salam Model, Nucl. Phys. B158 141.CrossRefADSMathSciNetGoogle Scholar
  98. [98]
    Martín, C.P., Sánchez-Ruiz, D. The One-loop UV-Divergent Structure of U(1)-Yang-Mills Theory on Noncommutative ℝ4, Madrid Preprint FT/UCM-15-99, hep-th/9903077.Google Scholar
  99. [99]
    Mourad, J. (1995) Linear Connections in Non-Commutative Geometry, Class. and Quant. Grav. 12 965.zbMATHCrossRefADSMathSciNetGoogle Scholar
  100. [100]
    Ogievetsky, O., Schmidke, W.B., Wess, J. Zumino, B. (1992) q-deformed Poincaré algebra, Comm. Math. Phys. 150 495–518.zbMATHCrossRefADSMathSciNetGoogle Scholar
  101. [101]
    Ohn, C. (1992) A *-Product on SL(2) and the Corresponding Nonstandard Quantum-U(sl(2)), Lett. Math. Phys. 25 85.zbMATHCrossRefMathSciNetADSGoogle Scholar
  102. [102]
    Pais, A., Uhlenbeck, G.E. (1950) On Field Theories with Non-Localized Action, Phys. Rev. 79 145.zbMATHCrossRefADSMathSciNetGoogle Scholar
  103. [103]
    Paschke, M,, Sitarz, A. (1998) Discrete spectral triples and their symmetries, J. Math. Phys. 39 6191.zbMATHCrossRefADSMathSciNetGoogle Scholar
  104. [104]
    Podleś, P. (1987) Quantum Spheres, Lett. Math. Phys. 47 193.CrossRefADSGoogle Scholar
  105. [105]
    Podleś, P. (1996) Solutions of the Klein-Gordon and Dirac Equation on Quantum Minkowski Spaces, Comm. Math. Phys. 182 569.CrossRefADSGoogle Scholar
  106. [106]
    Podleś, P., Woronowicz, S.L. (1996) On the Classification of Quantum Poincaré Groups, Comm. Math. Phys. 178 61.CrossRefADSMathSciNetzbMATHGoogle Scholar
  107. [107]
    Pris, I., Schücker, T. (1997) Noncommutative geometry beyond the standard model, J. Math. Phys. 38 2255.zbMATHCrossRefADSMathSciNetGoogle Scholar
  108. [108]
    Rieél, M.A. (1980) Non-commutative Tori— A case study of Non-commutative Differentiable Manifolds, Contemp. Math. 105 191.Google Scholar
  109. [109]
    — (1981) C*-algebras associated with irrational rotation, Pacific J. Math. 93 415.Google Scholar
  110. [110]
    Sakharov, A.D. (1967) Vacuum quantum fluctuations in curved space and the theory of gravitation, Doklady Akad. Nauk S.S.S.R. 177 70.ADSGoogle Scholar
  111. [111]
    Sakharov, A.D. (1975) Spectral Density of Eigenvalues of the Wave Equation and Vacuum Polarization, Teor. i Mat. Fiz. 23 178.Google Scholar
  112. [112]
    Schlieker, M., Weich, W., Weixler, R. (1992) Inhomogeneous Quantum Groups, Z. Physik C 53 79–82.MathSciNetGoogle Scholar
  113. [113]
    Schmüdgen, K. Operator representations of a q-deformed Heisenberg algebra, Leibzig Preprint, q-alg/9805131.Google Scholar
  114. [114]
    Schupp, P., Watts, P., Zumino, B. (1992) The 2-Dimensional Quantum Euclidean Algebra, Lett. Math. Phys. 24 141.zbMATHCrossRefMathSciNetADSGoogle Scholar
  115. [115]
    Schwenk, J., Wess, J. (1992) A q-deformed quantum mechanical toy model, Phys. Lett. B291 273.ADSMathSciNetGoogle Scholar
  116. [116]
    Schwinger, J. (1960) Unitary Operator Bases, Proc. Nat. Acad. Sci. 46 570.zbMATHMathSciNetGoogle Scholar
  117. [117]
    Seiler, R. (1999) Geometric Properties of Transport in Quantum Hall Systems, Proceedings of the 38. Internationale Universitätswochen für Kern-und Teilchenphysik, ‘Geometrie und Quantenphysik’, Schladming, Austria, Eds. H. Gausterer, H. Grosse, L. Pittner, Lecture Notes in Physics, Springer-Verlag.Google Scholar
  118. [118]
    Sitarz, A. (1994) Gravity from non-commutative geometry, Class. and Quant. Grav. 11 2127.zbMATHCrossRefADSMathSciNetGoogle Scholar
  119. [119]
    Snyder, H.S. (1947) Quantized Space-Time, Phys. Rev. 71 38.zbMATHCrossRefADSMathSciNetGoogle Scholar
  120. [120]
    — (1947) The Electromagnetic Field in Quantized Space-Time, Phys. Rev.72 68.zbMATHCrossRefADSMathSciNetGoogle Scholar
  121. [121]
    Várilly, J.C. (1997) Introduction to Noncommutative Geometry, Proceedings of the European Mathematical Society Summer School on Noncommutative Geometry and Applications, Monsaraz and Lisbon.Google Scholar
  122. [122]
    Várilly, J.C., Gracia-Bondía, J.M. (1993) Connes’ noncommutative differential geometry and the Standard Model, J. Geom. Phys. 12 223.zbMATHCrossRefMathSciNetADSGoogle Scholar
  123. [123]
    Wess, J., Zumino, B. (1990) Covariant Differential Calculus on the Quantum Hyperplane, Nucl. Phys. B (Proc. Suppl.) 18 302.MathSciNetGoogle Scholar
  124. [124]
    Woronowicz, S.L. (1987) Twisted SU(2) Group. An example of a Non-Commutative Differential Calculus, Publ. RIMS, Kyoto Univ. 23 117; (1987) Compact Matrix Pseudogroups, Comm. Math. Phys. 111 613.zbMATHMathSciNetGoogle Scholar
  125. [125]
    Weyl, H. (1950) The Theory of Groups and Quantum Mechanics, Dover, New YorkGoogle Scholar
  126. [126]
    Yukawa, H. (1949) On the radius of the Elementary Particle, Phys. Rev. 76 300.zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. Madore
    • 1
  1. 1.LPTUniversité de Paris-SudOrsayFrance

Personalised recommendations