Geometric Properties of Transport in Quantum Hall Systems

  • Th. Richter
  • R. Seiler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 543)


In this first section, we present a short review of theoretical approaches to the quantum Hall effect. For an in depth coverage, we refer to the recent book D. J. Thouless (1998), as well as to M. Stone (1992). Let us recall how a quantum Hall system in a laboratory looks like: a strong magnetic field runs perpendicular through a probe of a conductor or semiconductor, forming a two-dimensional system; this setup is typically realized as inversion layers in field effect transistors, formed at the interface between an insolator and a semiconductor under the influence of an electric field perpendicular to the interface. If the temperature of the system is near zero, the electrons are bo- und by a deep potential well, forming a two-dimensional system. We identify this inversion layer with the x-y plane, hence B is parallel to the z-axis.


Geometric Property Edge State Hall Conductance Chern Character Adiabatic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Abrahams, P.W. Anderson, D. Licciardello, T. Ramakrishnan (1979): Scaling Theory of Localization: Absense of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 42, 673CrossRefADSGoogle Scholar
  2. M. Aizenman, G. M. Graf (1998): Localization bounds for an electron gas. J. Phys. A 31 6783ADSMathSciNetGoogle Scholar
  3. E. Akkermans, J. E. Avron, R. Narevich, R. Seiler (1998): Boundary conditions for Bulk and Edge States in Quantum Hall Systems. European J. Phys. B 1, 117ADSGoogle Scholar
  4. M. F. Atiyah, V. K. Patodi, I. M. Singer (1975): Spectral asymmetry and Riemannian Geometry I. Math. Proc. Camb. Phil. Soc. 77, 43zbMATHMathSciNetGoogle Scholar
  5. J. E. Avron, A. Elgart (1998): The Adiabatic Theorem of Quantum Mechanics. Private communications, to appear in Comm. Math. Phys. The paper can be obtained at
  6. J. E. Avron, R. Seiler (1985): Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett. 54 259CrossRefADSMathSciNetGoogle Scholar
  7. J. E. Avron, R. Seiler, L. G. Yaffe (1987): Adiabatic theorems and applications to the quantum Hall effect. Comm. Math. Phys. 110 33zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. J. E. Avron, R. Seiler, B. Simon (1994a): Charge deficiency, charge transport and comparison of dimension. Comm. Math. Phys. 159, 399zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. J. E. Avron, R. Seiler, B. Simon (1994b): The index of a pair of projections. J. of Funct. Anal. 120 220zbMATHCrossRefMathSciNetGoogle Scholar
  10. J. E. Avron, R. Seiler, P. G. Zograf: Adiabatic Quantum Transport: Quantization and Fluctuations. Phys. Rev. Lett. 73 No. 24, 3255Google Scholar
  11. J. E. Avron, R. Seiler, P. G. Zograf: Viscosity of Quantum Hall Fluids. Phys. Rev. Lett. 75 No. 4 697Google Scholar
  12. J. Bellisard in: Proceedings of the Bad Schandau conference on localization, Eds. Ziesche and Weller. Teubner-VerlagGoogle Scholar
  13. J. Bellissard, A. van Elst, H. Schulz-Baldes (1994): The non commutative goemetry of the quantum Hall effect. J. Math. Phys. 35, 5373zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. M. V. Berry (1984): Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392 45MathSciNetGoogle Scholar
  15. S. Borac (1995): On the Algebra Generated by Two Projections. J. Math. Phys. 36, No. 2, 863zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. M. Born, V. Fock (1928): Beweis des Adiabatensatzes. Z. Phys. 51 165–169CrossRefADSGoogle Scholar
  17. A. M. Chang, J. E. Cunningham (1989): Solid State Comm. 72 652ADSCrossRefGoogle Scholar
  18. R. G. Clark et al. (1988): Experimental Determinatino of Fractional Charge e/q for Quasiparticle Excitations in the Fractional Quantum Hall Effect. Phys. Rev. Lett. 60 1747CrossRefADSGoogle Scholar
  19. A. Connes (1985): Introduction to non commutative differential geometry. Publ. IHES 62, 257MathSciNetGoogle Scholar
  20. A. Connes (1994): Noncommutative Geometry. Academic Press, London.zbMATHGoogle Scholar
  21. J. Fröhlich, T. Kerler (1991): Universality in quantum Hall systems. Nulc. Phys. B 354 369CrossRefADSGoogle Scholar
  22. J. Fröhlich, U. Studer (1992): Gauge invariance in non-relativistic many-body theory. In: Mathematical Physics X. K. Schmüdgen Eds. Springer, Berlin, Heidelberg, New York.Google Scholar
  23. E. H. Hall (1879): On a new action of the Magnet on Electric Currents: Amer. J. Math. 2 287CrossRefGoogle Scholar
  24. B. I. Halperin (1982): Quantized Hall conductance, current-carrying edge states, and the existance of extended states in a two dimensional disordered potential, Phys. Rev. B 25 2185ADSMathSciNetGoogle Scholar
  25. B. I. Halperin, P. A. Lee, N. Read (1993): Phys. Rev. B 47, 7312ADSGoogle Scholar
  26. T. Kato (1950): On the adiabatic theorem of quantum mechanics. J. Phys. Soc. J., 5, 435CrossRefADSGoogle Scholar
  27. T. Kato (1966): Pertubation theory of linear operators. Springer, Berlin, Heidelberg, New York.Google Scholar
  28. M. Klein, R. Seiler (1990): Power law corrections to the Kubo formula vanish in quantum Hall systems. Comm. Math. Phys. 128 141zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. K. von Klitzing, G. Dorda, M. Pepper (1980): Realization of a resistance standard based on fundamental constants, Phys. Rev. Lett. 45 494CrossRefADSGoogle Scholar
  30. M. Komoto (1985): Topological invariants and the quantization of the Hall conductance. Ann. Phys. 160 343–354CrossRefADSGoogle Scholar
  31. R. Laughlin (1981): Quantized Hall conductivity in two dimensions, Phys. Rev. B23 5652ADSGoogle Scholar
  32. R. Laughlin (1983): Anomalous quantum Hall effect: an incompressible quantu fluid with fractionally charged excitations. Phys. Rev. Lett 50 1395CrossRefADSGoogle Scholar
  33. R. Laughlin (1987) in: R. E. Prange and S. M. Girvin, Eds.: The Quantum Hall Effect Springer, Berlin, Heidelberg, New York.Google Scholar
  34. P. Lévay (1995): Berry Phases for Landau Hamiltonians on deformed tori. J. Math. Phys. 36 No. 6Google Scholar
  35. Q. Niu, D.J. Thouless, Y. S. Wu (1985): Quantum Hall conductance as a topological invariant. Phys. Rev. B 31 3372ADSMathSciNetGoogle Scholar
  36. Q. Niu, D.J. Thouless (1987): Quantum Hall effect with realistic boundary conditions. Phys. Rev. B 35 2188ADSGoogle Scholar
  37. D. Quillen (1985): Determinants of Cauchy-Riemann operators on Riemann surfaces. Funkts. Anal. Prilozh. 19, 37MathSciNetGoogle Scholar
  38. B. Simon (1979): Trace ideals and their applications. Cambridge Univ. PressGoogle Scholar
  39. B. Simon (1971): Hamiltonians defined as quadratic forms. Princeton Univ. Press.Google Scholar
  40. J. A. Simmons et al. (1989): Phys. Rev. Lett. 63 1731CrossRefADSGoogle Scholar
  41. M. Stone: Ann. Phys. 207 38Google Scholar
  42. M. Stone, Ed.: The Quantum Hall Effect World Scientific, Singapore.Google Scholar
  43. D. J. Thouless, M. Kohmoto, P. Nightingale, M. den Nijs (1982): Quantized Hall Conductance in a Two-Dimensional Periodic Potential Phys. Rev. Lett. 49, 40CrossRefADSGoogle Scholar
  44. D. J. Thouless (1994): Topological interpretations of quantum Hall conductance J. Math. Phys. 35 No. 10, 5362zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. D. J. Thouless (1998): Topological Quantum Numbers in Nonrelativistic Physics World Scientific, Singapore.CrossRefGoogle Scholar
  46. D. C. Tsui, H. L. Störmer, A. C. Gossard (1982): Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys Rev. Lett. 48 1559CrossRefADSGoogle Scholar
  47. X. G. Wen (1989): Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40 7387ADSGoogle Scholar
  48. X. G. Wen, A. Zee (1992): Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev. B 46 2290ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Th. Richter
    • 1
  • R. Seiler
    • 1
  1. 1.Fachbereich MathematikBerlinGermany

Personalised recommendations