q-Deformed Heisenberg Algebras

  • Julius Wess
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 543)


This lecture consists of two sections. In section 1 we consider the simplest version of a q-deformed Heisenberg algebra as an example of a noncommutative structure. We first derive a calculus entirely based on the algebra and then formulate laws of physics based on this calculus. Then we realize that an interpretation of these laws is only possible if we study representations of the algebra and adopt the quantum mechanical scheme. It turns out that observables like position or momentum have discrete eigenvalues and thus space gets a lattice-like structure.


Hilbert Space Covariant Derivative Quantum Group Selfadjoint Operator Leibniz Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BA ss E. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969.Google Scholar
  2. BB Elicki, Hopf Algebras, Cambridge Tracts in Mathematics, Cambridge University Press, 1977.Google Scholar
  3. BC Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997.zbMATHGoogle Scholar
  4. BD Kassel, Quantum Groups, Springer, Berlin, 1995.zbMATHGoogle Scholar
  5. BE Majid, Foudations of Quantum Group Theory, Cambridge University Press, 1995.Google Scholar
  6. BF Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press, 1995.Google Scholar
  7. BG Landi, An Introduction to Noncommutative Spaces and their Geometries, Springer Lecture Notes, Springer, Berlin, 1997.zbMATHGoogle Scholar
  8. BH Lusztig, Introduction to Quantum Groups, Birkhaeuser, Boston, 1993.Google Scholar
  9. BI D. Faddeev, N. Y. Reshetikhin, L. A. Takhtajan Quantization of Lie Groups and Lie Algebra, Algebra Analysis 1, 178, 1989; translation: Leningrad Math. 3.1., 193, 1990.Google Scholar
  10. BJ G. Drinfeld, Quantum Groups, Proc. ICM Berkeley, 798, 1987,.Google Scholar
  11. BK Jimbo, A q-Difference Analogue of U(q) and the Yang-Baxter Equation, Lett. Math. Phys.10, 1985.Google Scholar
  12. BL Lorek, A. W. Schmidke, J. Wess, SU q(2) Covariant R-Matrices for Reducible Representations, Lett. Math. Phys. 31: 279, 1994.zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. BM Snyder, Quantized Space-Time, Phys. Rev. 71: 38, 1947.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. BN B. Schmidke, J. Wess, B. Zumino, A q-deformed Lorentz Algebra, Z. Phys. C 52: 471, 1991.ADSMathSciNetGoogle Scholar
  15. BO Ogievetsky, W. B. Schmidke, J. Wess, B. Zumino, Six Generator q-deformed Lorentz Algebra, Lett. Math. Phys.23: 233, 1991.zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. BP Ogievetsky, W. B. Schmidke, J. Wess, B. Zumino, q-deformed Poincaré Algebra, Comm. Math. Phys.150: 495, 1992.zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. BQ Lukierski, H. Ruegg, A. Nowicki, V. N. Tolstoy, q-Deformation of Poincaré Algebra, Phys. Lett. B 264: 331, 1992.ADSMathSciNetGoogle Scholar
  18. BR L. Woronowicz, Twisted SU(2) Group. An Example of Non-commutative Differential Calculus, Publ. RIMS-Kyoto 23: 117, 1987.zbMATHMathSciNetGoogle Scholar
  19. BS Wess, B. Zumino, Covariant Differential Calculus on the Quantum Hyperplane, Nucl. Phys. B (Proc. Suppl.) 18 B: 302, 1990.Google Scholar
  20. BT Dimakis, J. Madore, Differential Calculi and Linear Connection, J. Math.Phys. 37: 4647, 1996.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. BU Carow-Watamura, M. Schlieker, S. Watamura, W. Weich, Bicovariant Differential Calculus on Quantum Groups SU q(N) and SO q(N), Comm. Math. Phys. 142: 605, 1991.zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. BV Carow-Watamura, M. Schlieker, S. Watamura, SO q(N) Covariant Differential Calculus on Quantum Space and Quantum Deformation of Schrödinger Equation,Z. Phys. C 49: 439, 1991.MathSciNetGoogle Scholar
  23. BW Fiore, J. Madore, Leibniz Rules and Reality Conditions, Preprint 98-13, math/9806071, Napoli, 1998.Google Scholar
  24. BX Fiore, Harmonic Oscillator on the Quantum Euclidean Space R q N-1, Proceedings of the Clausthal Symposion on Nonlinear, Dissipative, Irreversible Quantum Systems, 1994.Google Scholar
  25. BY Ogievetsky, B. Zumino, Reality in the Differential Calculus on q-Euclidean Spaces, Lett. Math. Phys.25: 121, 1992.zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. BZ A. Azcàrraga, P. P. Kulish, F. Rodenas, On the Physical Contents of q-deformed Minkowski Space, Phys. Lett.B 351: 123, 1995.ADSGoogle Scholar
  27. CA Fiore, J. Madore, The Geometry of Quantum Euclidean Spaces, Preprint LMU-TPW 97-23, math/9904027, 1997.Google Scholar
  28. CB Pillin, On the Deformability of Heisenberg Algebras, Comm. Math. Phys. 180: 23, 1996.zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. CD Zippold, Hilbert space Representations of an Algebra of Observables for q-deformed Relativistic Quantum Mechanics, Z. Phys. C 67: 681, 1995.ADSMathSciNetGoogle Scholar
  30. CE Ocampo, SO q(4) Quantum Mechanics, Z. Phys. C 70: 525, 1996.Google Scholar
  31. CF Lorek, W. Weich, J. Wess, Non-commutative Euclidean and Minkowski Structures, Z.Phys. C 76: 375, 1997.MathSciNetGoogle Scholar
  32. CG L. Cerchiai, J. Wess, q-deformed Minkowski Space based on a q-Lorentz Algebra, E. Phys. J. C 5: 553, 1998.ADSMathSciNetGoogle Scholar
  33. CH L. Curtright, C. K. Zachos, Deforming maps for quantum algebras, Phys. Lett. B 243: 237, 1990.ADSMathSciNetGoogle Scholar
  34. CI Pillin, W. B. Schmidke, J. Wess q-Deformed Relativistic One-Particle States, Nucl. Phys. B 403: 223, 1993.CrossRefADSMathSciNetGoogle Scholar
  35. CJ Rohregger, J. Wess, q-deformed Lorentz Algebra in Minkowski Phase Space, E. Phys. J. C 7: 177, 1999.ADSMathSciNetGoogle Scholar
  36. CK Kiesler, J. Madore, T. Masson, On Finite Differential Calculus, Contemp. Math. 203: 135, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Julius Wess
    • 1
    • 2
  1. 1.Sektion Physik der Ludwig-Maximilians-UniversitätMünchen
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)München

Personalised recommendations