Advertisement

Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins

  • Bernard Meunier
  • Jean Bernadou
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 97)

Abstract

Heme-containing monooxygenases are able to catalyze two different classes of oxidation reactions. The first class includes oxygenation reactions (hydroxylation, epoxidation, N- or S-oxide formation, etc.) which are mediated by an electrophilic oxidative species. The second class is represented by the oxidative deformylation of aldhehydes and involves a nucleophilic oxidant as active intermediate. The reductive activation of molecular oxygen by cytochromes P450 generates a nucleophilic iron(III)-peroxo species which produces by protonation an electrophilic high-valent iron-oxo [formally an iron(V)oxo] responsible for electrophilic oxygen atom transfers. The nucleophilic properties of the iron(III)-peroxo intermediate in cytochrome P450 are due to the porphyrin ring acting as electron reservoir and also to the negative charge accumulated on the proximal cysteine during the initial reduction step of the catalytic cycle. The nature of the high-valent iron-oxo species generated in the catalytic cycle of heme-peroxidases will be also discussed. Among the different methods for studying the oxygenation reactions mediated by high-valent metal-oxo porphyrin complexes, the recent discovery of the “oxo-hydroxo tautomerism” provides a useful tool to investigate the mechanism of O-atom transfer reactions in aqueous media.

Keywords

Metal-oxo Metal-peroxo Electrophilic Nucleophilic Cytochrome Peroxidase Oxo-hydroxo tautomerism Metalloporphyrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) Pharmacogenetics 6: 1CrossRefGoogle Scholar
  2. 2.
    Ortiz de Montellano PR (ed) (1996) Cytochrome P450: structure, mechanism and biochemistry. Plenum, New YorkGoogle Scholar
  3. 3.
    Ullrich V (1979) Topics in Current Chemistry 83: 67CrossRefGoogle Scholar
  4. 4.
    Taube H (1965) J Gen Physiol 49: 29CrossRefGoogle Scholar
  5. 5.
    Hayaishi O (ed) (1974) Molecular mechanism of oxygen activation. Academic Press, New YorkGoogle Scholar
  6. 6.
    Groves JT, Han YZ (1996) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry. Plenum, New York, chap 1, pp 3–48Google Scholar
  7. 7.
    Meunier B (1992) Chem Rev 92: 1411CrossRefGoogle Scholar
  8. 8.
    Mansuy D (1987) Pure Appl Chem 59: 759CrossRefGoogle Scholar
  9. 9.
    Ostovic D, Bruice TC (1992) Acc Chem Res 25: 314CrossRefGoogle Scholar
  10. 10.
    Dolphin D, Traylor TG, Xie LY (1997) Acc Chem Res 30: 259CrossRefGoogle Scholar
  11. 11.
    Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95: 3555CrossRefGoogle Scholar
  12. 12.
    Meunier B (2000) Biomimetic oxidations mediated by metal complexes. Imperial College Press, LondonGoogle Scholar
  13. 13.
    Bernadou J, Meunier B (1998) Chem Commun 2167Google Scholar
  14. 14.
    Poulos TL, Finzel BC, Howard AJ (1986) Biochemistry 25: 5314CrossRefGoogle Scholar
  15. 15.
    Poulos TL, Finzel BC, Howard AJ (1987) J Mol Biol 195: 687CrossRefGoogle Scholar
  16. 16.
    Griffin BW, Peterson JA (1972) Biochemistry 11: 4740CrossRefGoogle Scholar
  17. 17.
    Atkins WA, Sligar SG (1990) Biochemistry 29: 1271CrossRefGoogle Scholar
  18. 18.
    Poulos TL, Cupp-Vickery J, Li H (1996) In: Ortiz de Montellano PR (ed) (1996) Cytochrome P450: structure, mechanism and biochemistry. Plenum, New York, chap 4, pp 125–150Google Scholar
  19. 19.
    Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Science 261: 731CrossRefGoogle Scholar
  20. 20.
    Gleria KD, Nickerson DP, Hill HAO, Wong LL, Fülöp V (1998) J Am Chem Soc 120: 46CrossRefGoogle Scholar
  21. 21.
    Raag R, Poulos TL (1989) Biochemistry 28: 7586CrossRefGoogle Scholar
  22. 22.
    Hanson LK, Eaton WA, Sligar SG, Gunsalus IC, Gouterman M, Connell CR (1976) J Am Chem Soc 98: 2672CrossRefGoogle Scholar
  23. 23.
    Caron C, Mitschler A, Rivere G, Ricard L, Schappacher M, Weiss R (1979) J Am Chem Soc 101: 7401CrossRefGoogle Scholar
  24. 24.
    Ueno T, Kuosumi Y, Yoshizawa-Kumagaye K, Nakajima K, Ueyama N, Okamura TA, Nakamura A (1998) J Am Chem Soc 120: 12,264CrossRefGoogle Scholar
  25. 25.
    Egawa T, Ogura T, Makino R, Ishimura Y, Kitagawa T (1991) J Biol Chem 266: 10,246Google Scholar
  26. 26.
    MacDonald IDG, Sligar SG, Christian JF, Unno M, Champion PM (1999) J Am Chem Soc 121: 376CrossRefGoogle Scholar
  27. 27.
    El-Kasmi D, Tetreau C, Lavalette D, Momenteau M (1995) J Am Chem Soc 117: 6041CrossRefGoogle Scholar
  28. 28.
    Benson DE, Suslick KS, Sligar SG (1997) Biochemistry 36: 5104CrossRefGoogle Scholar
  29. 29.
    Vidakovic M, Sligar SG, Li H, Poulos TL (1998) Biochemistry 37: 9211CrossRefGoogle Scholar
  30. 30.
    Vaz ADN, Roberts ES, Coon MJ (1991) J Am Chem Soc 113: 5886CrossRefGoogle Scholar
  31. 31.
    Roberts ES, Vaz ADN, Coon MJ (1991) Proc Natl Acad Sci USA 88: 8963CrossRefGoogle Scholar
  32. 32.
    Caspi E, Arunachalam T, Nelson PA (1986) J Am Chem Soc 108: 1847CrossRefGoogle Scholar
  33. 33. a)
    (a)_Ortiz de Montellano PR (1996) In: Ortiz de Montellano PR (ed) (1996) Cytochrome P450: structure, mechanism and biochemistry. Plenum, New York, chap 8, pp 245–303Google Scholar
  34. 33. b)
    (b)_Graham-Lorenze S, Amarneh B, White RE, Peterson JA, Simpson ER (1995) Protein Science 4: 1065CrossRefGoogle Scholar
  35. 34.
    Moali C, Boucher JL, Sari MA, Stueher DJ, Mansuy D (1998) Biochemistry 37: 10,453CrossRefGoogle Scholar
  36. 35.
    Ortiz de Montellano PR (1998) Acc Chem Res 31: 543CrossRefGoogle Scholar
  37. 36.
    Gerber NC, Sligar SG (1992) J Am Chem Soc 114: 8742CrossRefGoogle Scholar
  38. 37.
    Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Biochemistry 30: 11,420Google Scholar
  39. 38.
    Shaik S, Filatov M, Schröder D, Schwarz H (1998) Chem Eur J 4: 193CrossRefGoogle Scholar
  40. 39.
    Everse J, Everse KE, Grisham MB (eds) (1991) Peroxidases in chemistry and biology (2 volumes). CRC Press, Boca RatonGoogle Scholar
  41. 40.
    Atkinson JF, Ingold KU (1993) Biochemistry 32: 9209CrossRefGoogle Scholar
  42. 41.
    Toy PH, Newcomb M, Hollenberg PF (1998) J Am Chem Soc 120: 7719CrossRefGoogle Scholar
  43. 42.
    Groves JT, McClusky GA, White RE, Coon MJ (1978) Biochem Biophys Res Commun 81: 154CrossRefGoogle Scholar
  44. 43.
    Iyer KR, Jones JP, Darbyshire JF, Trager WF (1997) Biochemistry 36: 7136CrossRefGoogle Scholar
  45. 44.
    Manchester JI, Dinnocenzo JP, Higgins LA, Jones JP (1997) J Am Chem Soc 119: 5069CrossRefGoogle Scholar
  46. 45.
    Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95: 3555CrossRefGoogle Scholar
  47. 46.
    Toy PH, Newcomb M, Coon MJ, Vaz ADN (1998) J Am Chem Soc 120: 9718CrossRefGoogle Scholar
  48. 47.
    Siegbahn PEM, Crabtree RC (1999) J Am Chem Soc 121: 117CrossRefGoogle Scholar
  49. 48.
    Linde C, Akermark B, Norrby PO, Svensson M (1999) J Am Chem Soc 121: 5083CrossRefGoogle Scholar
  50. 49.
    Sisemore MF, Selke M, Burstyn JN, Valentine JS (1997) Inorg Chem 36: 979CrossRefGoogle Scholar
  51. 50.
    Selke M, Valentine JS (1998) J Am Chem Soc 120: 2652CrossRefGoogle Scholar
  52. 51.
    Wertz DL, Sisemore MF, Selke M, Driscoll J, Valentine JS (1998) J Am Chem Soc 120: 5331CrossRefGoogle Scholar
  53. 52.
    Ozette K, Leduc P, Palacio M, Bartoli JF, Barkigia KM, Fajer J, Battioni P, Mansuy D (1997) J Am Chem Soc 119: 6442CrossRefGoogle Scholar
  54. 53.
    Gisdakis P, Antonczak S, Köstlmeier S, Herrmann WA, Rösch N (1998) Angew Chem Int Ed 37: 2211CrossRefGoogle Scholar
  55. 54.
    Chen K, Que L (1999) Angew Chem Int Ed 38: 2227CrossRefGoogle Scholar
  56. 55.
    Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103: 2884CrossRefGoogle Scholar
  57. 56.
    Meunier B, Robert A, Pratviel G, Bernadou J (2000) In: Kadish K, Smith K, Guilard R (eds) The porphyrin handbook. Academic Press, San Diego, vol 4, chap 31, pp 119–187Google Scholar
  58. 57.
    Mandon D, Weiss R, Jayaraj K, Gold A, Terner J, Bill E, Trautwein AX (1992) Inorg Chem 31: 4404CrossRefGoogle Scholar
  59. 58.
    Gadjhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nature Structural Biol 4: 1032CrossRefGoogle Scholar
  60. 59.
    Urano Y, Higuchi T, Hirobe M, Nagano T (1997) J Am Chem Soc 119: 12,008CrossRefGoogle Scholar
  61. 60.
    Robert A, Loock B, Momenteau M, Meunier B (1991) Inorg Chem 30: 706CrossRefGoogle Scholar
  62. 61.
    Collins TJ, Gordon-Wylie SW (1989) J Am Chem Soc 111: 4511CrossRefGoogle Scholar
  63. 62.
    Collins TJ (1994) Acc Chem Res 27: 279CrossRefGoogle Scholar
  64. 63.
    Bottomley LA, Neely FL (1997) Inorg Chem 37: 5435CrossRefGoogle Scholar
  65. 64.
    Du Bois J, Tomooka CS, Hason J, Carreira EM (1997) Acc Chem Res 30: 364CrossRefGoogle Scholar
  66. 65.
    Bortolini O, Meunier B (1983) JCS Chem Commun 1364Google Scholar
  67. 66.
    Bortolini O, Ricci M, Meunier B, Friant P, Ascone I, Goulon J (1986) Nouv J Chim 10: 39Google Scholar
  68. 67.
    Ayougou K, Bill E, Charnock JM, Garner CD, Mandon D, Trautwein AX, Weiss R, Winkler H (1995) Angew Chem Int Ed Engl 34: 343CrossRefGoogle Scholar
  69. 68.
    Groves JT, Lee J, Maria SS (1997) J Am Chem Soc 119: 6269CrossRefGoogle Scholar
  70. 69.
    Jin N, Groves JT (1999) J Am Chem Soc 121: 2923CrossRefGoogle Scholar
  71. 70.
    English AM, Tsaprailis G (1995) Adv Inorg Chem 43: 79CrossRefGoogle Scholar
  72. 71.
    Meunier B (2000) In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London (in press)Google Scholar
  73. 72.
    Dawson JH (1988) Science 240: 433CrossRefGoogle Scholar
  74. 73.
    Penner-Hahn JE, Eble KS, McMurry TJ, Renner M, Balch AL, Groves JT, Dawson JH, Hodgson KO (1986) J Am Chem Soc 108: 7819CrossRefGoogle Scholar
  75. 74.
    Chang CS, Yamazaki I, Sinclair R, Khalid S, Powers L (1993) Biochemistry 32: 923CrossRefGoogle Scholar
  76. 75.
    Paeng KJ, Kincaid JR (1988) J Am Chem Soc 110: 7913CrossRefGoogle Scholar
  77. 76.
    Chuang WJ, Van Wart HE (1992) J Biol Chem 267: 13,293Google Scholar
  78. 77.
    Ozaki SI, Inada Y, Watanabe Y (1998) 120: 8020Google Scholar
  79. 78.
    Nakajima R, Yamazaki I (1987) J Biol Chem 262: 2576Google Scholar
  80. 79.
    Ator MA, David SK, Ortiz de Montellano PR (1987) J Biol Chem 262: 14,954Google Scholar
  81. 80.
    Chang YT, Veitch NC, Leow GH (1998) J Am Chem Soc 120: 5168CrossRefGoogle Scholar
  82. 81.
    Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4: 1032CrossRefGoogle Scholar
  83. 82.
    Klibanov AM, Berman Z, Alberti BN (1981) J Am Chem Soc 103: 6263CrossRefGoogle Scholar
  84. 83.
    Ortiz de Montellano PR, Choe YS, DePillis G, Catalano CE (1987) J Biol Chem 262: 11,641Google Scholar
  85. 84.
    Baciocchi E, Lanzalunga O, Malandrucco S (1996) J Am Chem Soc 118: 8973CrossRefGoogle Scholar
  86. 85.
    Griffin BW (1991) In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol II. CRC Press, Boca Raton, pp 85–137Google Scholar
  87. 86.
    Blanke SR, Hager LP (1988) J Biol Chem 263: 18,739Google Scholar
  88. 87.
    Sundaramoorthy M, Terner J, Poulos TL (1995) Structure 3: 1367CrossRefGoogle Scholar
  89. 88.
    Sundaramoorthy M, Terner J, Poulos TL (1998) Chem & Biol 5: 461CrossRefGoogle Scholar
  90. 89.
    Egawa T, Miki H, Ogura T, Makino R, Ishimura Y, Kitagawa T (1992) FEBS Let 305: 206CrossRefGoogle Scholar
  91. 90.
    Wagenknecht HA, Woggon WD (1997) Chem & Biol 4: 367CrossRefGoogle Scholar
  92. 91.
    Geigert J, Lee TD, Dalietos DJ, Hirano DS, Neidleman SL (1986) Biochem Biophys Res Commun 136: 778CrossRefGoogle Scholar
  93. 92.
    Debrunner PG, Dexter AF, Schulz CE, Xia YM, Hager LP (1996) Proc Natl Acad Sci USA 93: 12,791CrossRefGoogle Scholar
  94. 93.
    Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) 115: 4415Google Scholar
  95. 94.
    Dexter AF, Lakner FJ, Campbell RA, Hager LP (1995) 117: 6412Google Scholar
  96. 95.
    Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M, Carrea G, Pasta P (1990) Biochemistry 29: 10,465CrossRefGoogle Scholar
  97. 96.
    Colonna S, Gaggero N (1994) Phosph Sulf Silicon 95–96: 103CrossRefGoogle Scholar
  98. 97.
    Kobayashi S, Nakano M, Kimura T, Schaap AP (1987) Biochemistry 26: 5019CrossRefGoogle Scholar
  99. 98.
    Van Handel MJH, Primus JL, Teunis C, Boersma MG, Osman AM, Veeger C, Rietjens IMCM (1998) Inorg Chem Acta 275/276:98CrossRefGoogle Scholar
  100. 99.
    Meunier B, Guilmet E, De Carvalho ME, Poilblanc R (1985) J Am Chem Soc 106: 6668CrossRefGoogle Scholar
  101. 100.
    Robert A, Meunier B (1988) New J Chem 12: 885Google Scholar
  102. 101.
    Nam W, Valentine JS (1993) J Am Chem Soc 115: 1772CrossRefGoogle Scholar
  103. 102.
    The denomination “oxo-hydroxo tautomerism” which is reminiscent of the keto-enol tautomerism appears to be more precise than “redox tautomerism” that we initially proposed inFabiano AS, Robert A, Meunier B (1994) J Am Chem Soc 116: 937 [103]Google Scholar
  104. 103.
    Bernadou J, Fabiano AS, Robert A, Meunier B (1994) J Am Chem Soc 116: 937Google Scholar
  105. 104.
    Ingold KU, MacFaul PA (2000) In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metals. Imperial College Press, London, chap 2 (in press)Google Scholar
  106. 105.
    Hashimoto S, Tatsuno Y, Kitagawa T (1986) Proc Natl Acad Sci USA 83: 2417CrossRefGoogle Scholar
  107. 106.
    Makino R, Uno T, Nishimura Y, Iizuka T, Tsuboi M, Ishimura Y (1986) J Biol Chem 261: 8376Google Scholar
  108. 107.
    Hashimoto S, Tatsuno Y, Kitagawa T (1987) J Am Chem Soc 109: 8096CrossRefGoogle Scholar
  109. 108.
    Groves JT, Stern MK (1987) J Am Chem Soc 109: 3812CrossRefGoogle Scholar
  110. 109.
    Groves JT, Stern MK (1988) J Am Chem Soc 110: 8628CrossRefGoogle Scholar
  111. 110.
    Balahura RJ, Sorokin A, Bernadou J, Meunier B (1997) Inorg Chem 36: 3488CrossRefGoogle Scholar
  112. 111.
    Lee KA, Nam W (1997) J Am Chem Soc 119: 1916CrossRefGoogle Scholar
  113. 112.
    Pitié M, Bernadou J, Meunier B (1995) J Am Chem Soc 117: 2935CrossRefGoogle Scholar
  114. 113.
    Song R, Sorokin A, Bernadou J, Meunier B (1997) J Org Chem 62: 673CrossRefGoogle Scholar
  115. 114.
    Yang SJ, Nam W (1998) Inorg Chem 37: 606CrossRefGoogle Scholar
  116. 115.
    Prince S, Körber F, Cooke PR, Lindsay Smith JR, Mazid MA (1993) Acta Cryst C49: 1158Google Scholar
  117. 116.
    Jeon S, Bruice TC (1992) Inorg Chem 31: 4843CrossRefGoogle Scholar
  118. 117.
    Nam W, Goh YM, Lee YJ, Lim MH, Kim C (1999) Inorg Chem 38: 3238CrossRefGoogle Scholar
  119. 118.
    Wietzerbin K, Müller JG, Jameton RA, Pratviel G, Bernadou J, Meunier B, Burrows CJ (1999) Inorg Chem 38: 4123CrossRefGoogle Scholar
  120. 119.
    Sorokin A, Meunier B (1998) Eur J Inorg Chem 1269Google Scholar
  121. 120.
    Balch AL, Chan YW, Cheng RJ, La Mar GN, Latos-Grazynski L, Renner MW (1984) J Am Chem Soc 106: 7779CrossRefGoogle Scholar
  122. 121.
    Groves JT, Gross Z, Stern MK (1994) Inorg Chem 33: 5065CrossRefGoogle Scholar
  123. 122.
    Kaaret TW, Zhang GH, Bruice TC (1991) J Am Chem Soc 113: 4652CrossRefGoogle Scholar
  124. 123.
    Rachlewicz K, Latos-Grazynski L (1996) Inorg Chem 35: 1136CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernard Meunier
    • 1
  • Jean Bernadou
    • 1
  1. 1.Laboratoire de Chimie de Coordination du CNRSToulouse cedex 4France

Personalised recommendations