Nucleophilicity of Iron-Peroxo Porphyrin Complexes

  • Diana L. Wertz
  • Joan Selverstone Valentine
Part of the Structure and Bonding book series (STRUCTURE, volume 97)


For the past 20 years, cytochrome P450 researchers have sought to identify and to characterize the reactive intermediates in reactions of these enzymes. This review focuses on one of those postulated intermediates, the ferric heme peroxo complex, [(porphyrin)Fe(III)(O2 2-)]-, a species which has been postulated to be formed transiently in the P450 catalytic cycle. Ferric peroxo porphyrin complexes, inorganic complexes that model the peroxo species, have been synthesized and their chemical reactivities characterized for comparison with the enzymes. Such studies have identified certain peroxo porphyrins as remarkably strong nucleophiles capable of oxidizing a variety of electron-poor molecules. While the ferric heme peroxo intermediate, in the majority of P450 enzymes, rapidly converts to an oxoferryl species, some enzymes, e.g., aromatase, lanosterol 14α-demethylase, progesterone 17α-hydroxylase/17,20-lyase, and NO synthase, appear to use this intermediate as the active oxidant. Additionally, studies of ferric peroxo porphyrin complexes have increased our understanding of the nature of the P450 catalytic cycle and of the mechanisms of generation of other reactive intermediates used in P450 enzymes.


Iron-Peroxo Superoxide Cytochrome P450 Metal Peroxo Oxoferryl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96: 2841CrossRefGoogle Scholar
  2. 3.
    Coon MJ, Vaz ADN, Bestervelt LL (1996) Faseb J 10: 429Google Scholar
  3. 4.
    Ortiz de Montellano PR (1995) Oxygen activation and reactivity. In: Ortiz de Montellano PR (ed) Cytochrome P-450, structure, mechanism and biochemistry, 2nd edn. Plenum Press, New York, p 245Google Scholar
  4. 5.
    Mueller EJ, Loida PJ, Sligar SG (1995) Twenty-five years of P450cam research: mechanistic insights into oxygenase catalysis. In: Ortiz de Montellano PR (ed) Cytochrome P-450, structure, mechanism and biochemistry. 2nd edn. Plenum Press, New York, p 83Google Scholar
  5. 6.
    Akhtar M, Lee-Robichaud P, Akhtar ME, Wright JN (1997) J Steroid Biochem Molec Biol 61: 127CrossRefGoogle Scholar
  6. 7.
    Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95: 3555CrossRefGoogle Scholar
  7. 8.
    Groves JT, Han Y-Z (1995) Models and mechanisms of cytochrome P450 action. In: Ortiz de Montellano PR (ed) Cytochrome P-450, structure, mechanism and biochemistry, 2nd edn. Plenum Press, New York, p 3Google Scholar
  8. 9.
    Graham-Lorence S, Amarneh B, White RE, Peterson JA, Simpson ER (1995) Protein Science 4: 1065CrossRefGoogle Scholar
  9. 10.
    Akhtar M, Calder MR, Corina DL, Wright JN (1981) J Chem Soc, Chem Comm 3: 129CrossRefGoogle Scholar
  10. 11.
    Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Proc Natl Acad Sci USA 95: 6965CrossRefGoogle Scholar
  11. 12.
    Akhtar M, Calder MR, Corina DL, Wright JN (1982) Biochem J 201: 569Google Scholar
  12. 13.
    Morand P, Williamson DG, Layne DS, Lompa-Krzymien L, Salvador J (1975) Biochemistry 14: 635CrossRefGoogle Scholar
  13. 14.
    Cole PA, Robinson CH (1986) J Chem Soc, Chem Comm 1651Google Scholar
  14. 15.
    Korzekwa KR, Trager WF, Smith SJ, Osawa Y, Gillette JR (1991) Biochemistry 30: 6155CrossRefGoogle Scholar
  15. 16.
    Stevenson DE, Wright JN, Akhtar M (1988) J Chem Soc, Perkin Trans 1: 2043CrossRefGoogle Scholar
  16. 17.
    Poulos TL, Finzel BC, Howard AJ (1987) J Mol Biol 195: 687CrossRefGoogle Scholar
  17. 18.
    Oh SS, Robinson CH (1993) J Steroid Biochem Mol Biol 44: 389CrossRefGoogle Scholar
  18. 19.
    Cole PA, Robinson CH (1991) J Am Chem Soc 113: 8130CrossRefGoogle Scholar
  19. 20.
    Watanabe Y, Ishimura Y (1989) J Am Chem Soc 111: 8047CrossRefGoogle Scholar
  20. 21.
    Townsley JD, Broodie HJ (1968) Biochemistry 7: 33CrossRefGoogle Scholar
  21. 22.
    Vaz ADN, Kessell KJ, Coon MJ (1994) Biochemistry 33: 13,651Google Scholar
  22. 23.
    Raner GM, Chiang EW, Vaz ADN, Coon MJ (1997) Biochemistry 36: 4895CrossRefGoogle Scholar
  23. 24.
    Roberts ES, Vaz ADN, Coon MJ (1991) Proc Natl Acad Sci USA 88: 8963CrossRefGoogle Scholar
  24. 25.
    Vaz ADN, Pernecky SJ, Raner GM, Coon MJ (1996) Proc Natl Acad Sci USA 93: 4644CrossRefGoogle Scholar
  25. 26.
    Peng H-M, Raner GM, Vaz ADN, Coon MJ (1995) Arch Biochem Biophys 318: 333CrossRefGoogle Scholar
  26. 27.
    Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Proc Natl Acad Sci USA 86: 7823CrossRefGoogle Scholar
  27. 28.
    Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Biochemistry 30: 11,420Google Scholar
  28. 29.
    Counts Gerber NC, Sligar SG (1994) J Biol Chem 269: 4260Google Scholar
  29. 30.
    Poulos TL, Raag R (1992) FASEB J 6: 674Google Scholar
  30. 31.
    Benson DE, Suslick KS, Sligar SG (1997) Biochemistry 36: 5104CrossRefGoogle Scholar
  31. 32.
    Harris D, Loew G, Waskell L (1998) J Am Chem Soc 120: 4308CrossRefGoogle Scholar
  32. 33.
    Goodman LS, Gilman A (1996) The pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New YorkGoogle Scholar
  33. 34.
    Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck W-H, Wright JN, Corina D, Akhtar M (1996) J Biol Chem 271: 12,445Google Scholar
  34. 35.
    Fischer RT, Trzaskos JM, Magolda RL, Lo SS, Brosz CS, Larsen B (1991) J Biol Chem 266: 6124Google Scholar
  35. 36.
    Akhtar M, Corina D, Miller S, Shyadehi AZ, Wright JN (1994) Biochemistry 33: 4410CrossRefGoogle Scholar
  36. 37.
    Swinney DC, Mak AY (1994) Biochemistry 33: 2185CrossRefGoogle Scholar
  37. 38.
    Lee-Robichaud P, Shyadehi AZ, Wright JN, Akhtar ME, Akhtar M (1995) Biochemistry 34: 14,104CrossRefGoogle Scholar
  38. 39.
    Lee-Robichaud P, Akhtar ME, Akhtar M (1998) Biochemical J 330: 967Google Scholar
  39. 40.
    Degray JA, Lassmann G, Curtis JF, Kennedy TA, Marnett LJ, Eling TE, Mason RP (1992) J Biol Chem 267: 23,583Google Scholar
  40. 41.
    Harris RZ, Newmyer SL, Ortiz de Montellano PR (1993) J Biol Chem 268: 1637Google Scholar
  41. 42.
    Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Science 279: 2121CrossRefGoogle Scholar
  42. 43.
    Pufahl RA, Wishnok JS, Marietta MA (1995) Biochemistry 34: 1930CrossRefGoogle Scholar
  43. 44.
    Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA (1997) Science 278: 425CrossRefGoogle Scholar
  44. 45.
    Valentine JS, McCandlish E (1978) Reactions of Superoxide with metalloporphyrins. In: Dutton P, Leigh JS, Scarpa A (eds) Frontiers of biological energetics. Academic Press, New York, p 933Google Scholar
  45. 46.
    Kol’tover VK, Koifman OI, Khenkin AM, Shteinman AA (1982) Izvest Akad Nauk SSSR, Ser Khim 7: 1690Google Scholar
  46. 47.
    McCandlish E, Miksztal AR, Nappa M, Sprenger AQ, Valentine JS, Stong JD, Spiro TG (1980) J Am Chem Soc 102: 4268CrossRefGoogle Scholar
  47. 48.
    Welborn CH, Dolphin D, James BR (1981) J Am Chem Soc 103: 2869CrossRefGoogle Scholar
  48. 49.
    Reed CA (1982) Iron(I) and iron(IV) porphyrins. In: Kadish KM (ed) Electrochemical and spectrochemical studies of biological redox components. American Chemical Society, Washington DC, p 333Google Scholar
  49. 50.
    Ahmad S, McCallum JD, Shiemke AK, Appelman EH, Loehr TM, Sanders-Loehr J (1988) Inorganic Chemistry 27: 2230CrossRefGoogle Scholar
  50. 51.
    Shirazi A, Goff HM (1982) J Am Chem Soc 104: 6318CrossRefGoogle Scholar
  51. 52.
    Friant R, Goulon J, Fischer J, Ricard L, Schappacher M, Weiss R, Momenteau M (1985) Nouv J Chim 9: 33Google Scholar
  52. 53.
    Van Atta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109: 1425CrossRefGoogle Scholar
  53. 54.
    Burstyn JN, Roe JA, Miksztal AR, Shaevitz BA, Lang G, Valentine JS (1988) J Am Chem Soc 110: 1382CrossRefGoogle Scholar
  54. 55.
    Burstyn JN (1986) Ph.D. Thesis, University of California, Los AngelesGoogle Scholar
  55. 56.
    Sisemore MF, Selke M, Burstyn JN, Valentine JS (1997) Inorganic Chemistry 36: 979CrossRefGoogle Scholar
  56. 57.
    Khenkin AM, Shteinman AA (1982) Kinet Katal 23: 219Google Scholar
  57. 58.
    Khenkin AM, Shteinman AA (1984) J Chem Soc, Chem Comm 18: 1219CrossRefGoogle Scholar
  58. 59.
    Schappacher M, Weiss R (1985) J Am Chem Soc 107: 3736CrossRefGoogle Scholar
  59. 60.
    Groves JT, Watanabe Y (1986) J Am Chem Soc 108: 7834CrossRefGoogle Scholar
  60. 61.
    Miksztal AR, Valentine JS (1984) Inorganic Chemistry 23: 3548CrossRefGoogle Scholar
  61. 62.
    Sisemore MF, Burstyn JN, Valentine JS (1996) Angew Chem Int Ed Engl 35: 206CrossRefGoogle Scholar
  62. 63.
    Selke M, Sisemore MF, Valentine JS (1996) J Am Chem Soc 118: 2008CrossRefGoogle Scholar
  63. 64.
    Selke M, Valentine JS (1998) J Am Chem Soc 120: 2652CrossRefGoogle Scholar
  64. 65.
    Watanabe Y, Takehira K, Shimizu M, Hayakawa T, Orita H (1990) J Chem Soc, Chem Comm 13: 927CrossRefGoogle Scholar
  65. 66.
    Goto Y, Wada S, Morishima I, Watanabe Y (1998) J Inorg Biochem 69: 241CrossRefGoogle Scholar
  66. 67.
    Wertz DL, Sisemore MF, Selke M, Driscoll J, Valentine JS (1998) J Am Chem Soc 120: 5331CrossRefGoogle Scholar
  67. 68.
    Wertz DL (1999) Ph.D. Thesis, University of California, Los AngelesGoogle Scholar
  68. 70.
    Proshlyakov DA, Pressler MA, Babcock GT (1998) Proc Natl Acad Sci USA 95: 8020CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Diana L. Wertz
    • 1
  • Joan Selverstone Valentine
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations