Advertisement

Quantum Chemical Studies on Metal-Oxo Species Related to the Mechanisms of Methane Monooxygenase and Photosynthetic Oxygen Evolution

  • P. E. M. Siegbahn
  • Robert H. Crabtree
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 97)

Abstract

During the last few years it has become possible to study enzymatic mechanisms by means of high accuracy quantum chemistry methods. In the present review, examples are given of applications of density functional theory to two mechanisms involving redox active centers. In methane monooxygenase an iron dimer complex oxidizes methane to methanol. A hydrogen abstraction mechanism is suggested involving a high-valent Fe(IV,IV) intermediate, termed Q. In Photosystem II an oxyl radical mechanism is suggested for the formation of O2. Different models of the oxygen evolving cluster are discussed. Spin-state considerations are emphasized.

Keywords

Density functional theory Methane monooxygenase Photosystem II Spin-state crossings Oxyl radicals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaik S, Filatov M, Schroeder D, Schwartz H (1998) Chem Eur J 4: 193CrossRefGoogle Scholar
  2. 2.
    Siegbahn PEM, Blomberg MRA, Svensson M (1993) J Am Chem Soc 115: 4191–4200CrossRefGoogle Scholar
  3. 3.
    Mitchell SA, Blitz MA, Siegbahn PEM, Svensson M (1994) J Chem Phys 100: 423–433CrossRefGoogle Scholar
  4. 4.
    Carroll JJ, Weisshaar JC, Siegbahn PEM, Wittborn CAM, Blomberg MRA (1995) J Phys Chem 99: 14,388–14,396Google Scholar
  5. 5.
    Mitchell SA (1992) In: Fontijn A (ed) Gas phase metal reactions. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Bengali AA, Bergman RG, Moore CB (1995) J Am Chem Soc 117: 3879CrossRefGoogle Scholar
  7. 7.
    Siegbahn PEM (1996) J Am Chem Soc 118: 1487–1496CrossRefGoogle Scholar
  8. 8. (a)
    Shaik S, Danovich D, Fiedler A, Schröder D, Schwarz H (1996) Helvetica Chim Acta 78: 1393–1407CrossRefGoogle Scholar
  9. 8. (b)
    Filatov M, Shaik S (1998) J Phys Chem A 102: 3835–3846CrossRefGoogle Scholar
  10. 9. (a)
    Yoshizawa K, Shiota Y, Yamabe T (1998) Organometallics 17: 2825–2831CrossRefGoogle Scholar
  11. 9. (b)
    Yoshizawa K, Ohta T, Shiota Y, Yamabe T (1997) Chem Lett 1213–1214Google Scholar
  12. 9. (c)
    Yoshizawa K, Ohta T, Shiota Y, Yamabe T (1998) Bull Chem Soc Jpn 71: 1899CrossRefGoogle Scholar
  13. 10.
    Becke AD (1988) Phys Rev A 38: 3098CrossRefGoogle Scholar
  14. 11.
    Becke AD (1992) J Chem Phys 96: 2155–2160CrossRefGoogle Scholar
  15. 12.
    Becke AD (1993) J Chem Phys 98: 5648–5652CrossRefGoogle Scholar
  16. 13.
    Siegbahn PEM, Blomberg MRA (1999) Ann Rev Phys Chem 50: 221–249CrossRefGoogle Scholar
  17. 14.
    Siegbahn PEM, Blomberg MRA (1999) Chem Rev (in press)Google Scholar
  18. 15.
    Feig AL, Lippard SJ (1994) Chem Rev 94: 759CrossRefGoogle Scholar
  19. 16.
    Wallar BJ, Lipscomb JD (1996) Chem Rev 96: 2625CrossRefGoogle Scholar
  20. 17.
    Dalton H (1980) Adv Appl Microbiol 6: 1Google Scholar
  21. 18. (a)
    Sjöberg BM (1994) Structure 2: 793–796CrossRefGoogle Scholar
  22. 18. (b)
    Sjöberg BM (1997) Structure and Bonding 88: 139–173Google Scholar
  23. 19. (a)
    Stubbe J (1990) Biol Chem 265: 5330Google Scholar
  24. 19. (b)
    Mao SS, Holler TP, Yu GX, Bollinger JM, Booker S, Johnston MI, Stubbe J (1992) Biochemistry 31: 9733–9743CrossRefGoogle Scholar
  25. 20.
    Ortiz de Montellano PR (1986) Cytochrome P-450: Structure, mechanism, biochemistry. Plenum Press, NYGoogle Scholar
  26. 21.
    Wilkins PC, Wilkins RG (1987) Coord Chem Rev 79: 195CrossRefGoogle Scholar
  27. 22.
    Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Nature 366: 537CrossRefGoogle Scholar
  28. 23.
    Andersson KK, Froland A, Lee SK, Lipscomb JD (1991) New J Chem 15: 411Google Scholar
  29. 24. (a)
    Stassinopoulos A, Caradonna J (1990) J Am Chem Soc 112: 7071CrossRefGoogle Scholar
  30. 24. (b)
    Liesing RA, Brennan BA, Que L Jr (1991) J Am Chem Soc 113: 3988CrossRefGoogle Scholar
  31. 25.
    Priestley ND, Floss HG, Frohland WA, Lipscomb JD, Williams PG, Morimoto H (1992) J Am Chem Soc 114: 7561–7562CrossRefGoogle Scholar
  32. 26.
    Liu KE, Johnson CC, Newcomb M, Lippard SJ(1993) J Am Chem Soc 115: 939–947CrossRefGoogle Scholar
  33. 27.
    Choi SY, Eaton PE, Hollenberg PF, Liu KE, Lippard SJ, CC, Newcomb M, Putt DA, Upadhyaya SP, Xiong Y (1996) J Am Chem Soc 118: 6547–6555CrossRefGoogle Scholar
  34. 28.
    Valentine AM, Lippard SJ (1997) J Chem Soc Dalton Trans 3925Google Scholar
  35. 29.
    Yoshizawa K, Yamabe T, Hoffmann R (1997) New J Chem 21: 151Google Scholar
  36. 30.
    Shestakov AF, Shilov AE (1996) J Mol Catal A 105: 1CrossRefGoogle Scholar
  37. 31.
    Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119: 3103CrossRefGoogle Scholar
  38. 32.
    Shu L, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L Jr (1997) Science 275: 515CrossRefGoogle Scholar
  39. 33.
    Basch H, Mogi K, Musaev DG, Morokuma K (1999) J Am Chem Soc 121: 7249–7256CrossRefGoogle Scholar
  40. 34.
    Siegbahn PEM (1999) J Inorg Chem 38: 2880–2889CrossRefGoogle Scholar
  41. 35.
    Shaik S, private communicationGoogle Scholar
  42. 36. (a)
    Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96: 2927–2950CrossRefGoogle Scholar
  43. 36. (b)
    Ruettinger W, Dismukes GC (1997) Chem Rev 97Google Scholar
  44. 38. (c)
    Brudvig GW (1990) In: Hoff AJ (ed) Advanced EPR: applications in biology and biochemistry. Elsevier, Amsterdam, pp 839–865Google Scholar
  45. 38. (d)
    Yocum CF (1992) In: Pecoraro VL (ed) Manganese redox enzymes. VCH, NY, pp 71–83Google Scholar
  46. 38. (e)
    Kambara T, Govindjee (1985) Proc Nat Acad Sci USA, 82: 6119CrossRefGoogle Scholar
  47. 38. (f)
    Pecoraro VL (1988) Photochem Photobiol 48: 249CrossRefGoogle Scholar
  48. 38. (g)
    Christou G (1989) Acc Chem Res 22: 328CrossRefGoogle Scholar
  49. 38. (h)
    Armstrong WH (1992) In: Pecoraro VL (ed) Manganese redox enzymes. VCH, NY, pp 261–286Google Scholar
  50. 38. (i)
    Yocum CF (1991) Biochim Biophys Acta 1059: 1CrossRefGoogle Scholar
  51. 37.
    Lindberg K, Andreasson L (1992) Biochemistry 35: 14,259Google Scholar
  52. 38.
    Kok B, Forbush B, McGloin M (1970) Photochem Photobiol 11: 457CrossRefGoogle Scholar
  53. 39. (a)
    Hansson O, Aasa R, Vanngard T (1987) Biophys J 51: 825CrossRefGoogle Scholar
  54. 39. (b)
    de Paula JC, Brudvig GW (1985) J Am Chem Soc 107: 2643CrossRefGoogle Scholar
  55. 40. (a)
    Roeloffs TA, Liang W, Latimer MJ, Cinco RM, Rompel A, Andrews JC, Sauer K, Yachandra VK, Klein MP (1996) Proc Natl Acad Sci USA 93: 3335CrossRefGoogle Scholar
  56. 40. (b)
    Ono T, Noguchi T, Inoue Y, Kusinoki M, Matsushita T, Onayagi H (1992) Science 258: 1335CrossRefGoogle Scholar
  57. 40. (c)
    Iuzzolini L, Dittmer J, Dörner W, Meyer-Klaucke W, Dau H (1998) Biochemistry 37: 17,112–17,119Google Scholar
  58. 41. (a)
    Messinger J, Badger M, Wydrzinski T (1995) Proc Natl Acad Sci USA 92: 3209–3213CrossRefGoogle Scholar
  59. 41. (b)
    Messinger J, Hillier M, Badger M, Wydrzinski T (1995) In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer, Dordrecht, vol 2, pp 283Google Scholar
  60. 42.
    Cinco RM, Robblee JH, Rompel A, Fernandez C, Yachandra VK, Sauer K, Klein MP (1998) J Phys Chem B102: 8248–8256CrossRefGoogle Scholar
  61. 43.
    Beck WF, Brudvig GW (1988) Chem Scr 28A: 93Google Scholar
  62. 44. (a)
    Sharp RR (1992) In: Pecoraro VL (ed) Manganese redox enzymes. VCH, NY, pp 177–196Google Scholar
  63. 44. (b)
    Styring SA, Rutherford AW(1988) Biochemistry 27: 4915CrossRefGoogle Scholar
  64. 44. (c)
    Evelo RG, Styring SA, Rutherford AW, Hoff AJ (1988) Biochim Biophys Acta 973: 428Google Scholar
  65. 45. (a)
    Hoganson CW, Lydakis-Simantiris N, Tang XS, Tommos C, Warncke K, Babcock GT, Diner BA, McCracken J, Styring S (1988) Photosynth Res 46: 177CrossRefGoogle Scholar
  66. 45. (b)
    Babcock GT (1995) In: Mathis P (ed) Photosynthesis from light to biosphere. Kluwer, Dordrecht, vol 2, pp 209Google Scholar
  67. 45. (c)
    Tommos C, Tang XS, Warncke K, Hoganson CW, Styring S, McCracken J, Diner BA, Babcock GT (1995) J Am Chem Soc 117: 10,325CrossRefGoogle Scholar
  68. 45. (d)
    Tommos C, Babcock GT (1998) Acc Chem Res 31: 18CrossRefGoogle Scholar
  69. 45. (e)
    Hoganson CW, Babcock GT (1997) Science 277: 1953CrossRefGoogle Scholar
  70. 45. (f)
    Baldwin MJ, Pecoraro VL (1996) J Am Chem Soc 118: 11,325Google Scholar
  71. 45. (g)
    Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh WY, Law NA (1998) Pure Appl Chem 70: 925CrossRefGoogle Scholar
  72. 45. (h)
    Caudle MT, Pecoraro VL (1997) J Am Chem Soc 119: 3415CrossRefGoogle Scholar
  73. 46. (a)
    Haumann M, Bögershausen O, Cherepanov D, Ahlbrink R, Junge W (1997) Photosynth Res 51: 193–208CrossRefGoogle Scholar
  74. 46. (b)
    Ahlbrink R, Haumann M, Cherepanov D, Bögershausen O, Mulkidjanian A, Junge W (1998) Biochemistry 37: 1131–1142CrossRefGoogle Scholar
  75. 46. (c)
    Haumann M, Junge W (1999) Biochim Biophys Acta 1411: 86–91CrossRefGoogle Scholar
  76. 47. (a)
    Limburg J, Crabtree RH, Brudvig (1998) In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. ICP Press, SingaporeGoogle Scholar
  77. 47. (b)
    Limburg J, Szalai VA, Brudvig GW (1999) J Chem Soc Dalton 1353Google Scholar
  78. 48. (a)
    Blomberg MRA, Siegbahn PEM, Styring S, Babcock GT, Åkermark B, Korall P (1997) J Am Chem Soc 119: 8285–8292CrossRefGoogle Scholar
  79. 48. (b)
    Blomberg MRA, Siegbahn PEM (1997) Theor Chem Acc 97: 72–80Google Scholar
  80. 49. (a)
    Krishtalik LI (1986) Biochim Biophys Acta 849: 162CrossRefGoogle Scholar
  81. 49. (b)
    Krishtalik LI (1990) Bioelectrochem Bioenerg 23: 249CrossRefGoogle Scholar
  82. 50.
    Proserpio DM, Hoffmann R, Dismukes GC (1992) J Am Chem Soc 114: 4374CrossRefGoogle Scholar
  83. 51.
    Proserpio DM, Rappe AK, Gorun SM (1993) Inorg Chim Acta 213: 319CrossRefGoogle Scholar
  84. 52.
    Siegbahn PEM (1997) In: Comba P, Banci L (eds) Molecular modeling and dynamics of bioinorganic systems. Kluwer, pp 233–253Google Scholar
  85. 53.
    Siegbahn PEM, Crabtree RH (1999) J Am Chem Soc 121: 117–127CrossRefGoogle Scholar
  86. 54.
    Siegbahn PEM Inorg Chem (submitted)Google Scholar
  87. 55.
    Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) Science 283: 1524CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • P. E. M. Siegbahn
    • 1
  • Robert H. Crabtree
    • 2
  1. 1.Department of PhysicsStockholm UniversityStockholmSweden
  2. 2.Yale Chemistry DepartmentNew HavenUSA

Personalised recommendations