Advertisement

An Identity-Based Signature Scheme with Bounded Life-Span

  • Olivier Delos
  • Jean-Jacques Quisquater
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 839)

Abstract

The aim of this paper is to present a signature scheme in which the ability to sign messages of a signer is limited to a fixed number k of signatures. It is an identity-based signature scheme in which each signature can be used only once. We called such schemes “bounded life-span”. It is based on mental games and it uses zero-knowledge tools. A validation center is needed to initialize this identity-based scheme. A credential center is used to insure the unicity and the bounded life-span aspects. It allows delegation and numerous practical applications.

Keywords

Smart Card Signature Scheme Authentication Scheme Identity String Credential Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABKL93]
    M. Abadi, M. Burrows, C. Kaufman and B. Lampson. Authentication and delegation with smart cards. Science of Computer Programming, No 21, pp. 93–113, Elsevier, 1993.zbMATHCrossRefGoogle Scholar
  2. [BM88]
    M. Bellare and S. Micali. How to sign given any trapdoor function. Proceedings of the 20 th Symposium on Theory of Computing, STOC’90, pp. 427–437.Google Scholar
  3. [Bu93]
    M. V. D. Burmester. Recent developments in efficient Zero-Knowledge proofs. Talk given at the Université Catholique de Louvain, June 1993.Google Scholar
  4. [BCDP91]
    J. Boyar, D. Chaum, I. Damgard and T. Pedersen. Convertible Undeniable Signatures. Advances in cryptology, Proceedings of CRYPTO’ 90, Lecture Notes in Computer Science, No 537, pp. 189–205, Springer-Verlag, 1991.Google Scholar
  5. [BD89]
    M. V. D. Burmester and Y. G. Desmedt. Remarks on Soundness of Proofs. Electronic letters, pp. 1509–1510, Vol. 25, No 22, 26th October 1989.zbMATHCrossRefGoogle Scholar
  6. [BGKW88]
    M. Ben-Or, S. Goldwasser, J. Killian and A. Wigderson. Multi-prover interactive proofs: How to remove intractability assumptions. Proceedings of the twentieth annual ACM Symp. Theory of Computing, STOC’88, pp. 113–131, May 2–4, 1988.Google Scholar
  7. [CP94]
    G. do Crescenzo and G. Persiano. Round-optimal perfect zero-knowledge proofs. Information Processing Letters, pp. 93–99, Vol. 50, No 2, 22 April 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [CvA90]
    D. Chaum and H. van Antwerpen. Undeniable Signatures. Advances in cryptology, Proceedings of CRYPTO’ 89, Lecture Notes in Computer Science, No 435, pp. 212–216, Springer-Verlag, 1990.CrossRefGoogle Scholar
  9. [DF92]
    Y. Desmedt and Y. Frankel. Shared Generation of Authenticators and Signatures. Advances in cryptology, Proceedings of CRYPTO’ 91, Lecture Notes in Computer Science, No 576, pp. 457–469, Springer-Verlag, 1992.Google Scholar
  10. [DH76]
    W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, Vol. IT-22, No 6, pp. 644–654, 1976.CrossRefMathSciNetGoogle Scholar
  11. [DQ94]
    O. Delos and J.-J. Quisquater. Efficient multi-signature schemes for cooperating entities. Proceedings of French-Israeli Workshop on Algebraic Coding, Lecture Notes in Computer Science, No 781, pp. 63–74, Springer-Verlag, 1994.Google Scholar
  12. [DQ]
    O. Delos and J.-J. Quisquater. Biauthentication and secret message transmission. Manuscript UCL 1994.Google Scholar
  13. [dWQ90]
    D. de Waleffe and J.-J. Quisquater. Better login protocols for computer networks. Proceedings of ESORICS’ 90, pp. 163–172, October 1990.Google Scholar
  14. [FFS88]
    U. Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1(2), pp. 77–94, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [GDQ89]
    L. C. Guillou, M. Davio and J.-J. Quisquater Public-key techniques: Randomness and Redundancy. Cryptologia, Vol. 13, No 2, pp. 167–189, April 1989.CrossRefGoogle Scholar
  16. [GK89]
    O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. Technical Report No 570 of Technion, 1989.Google Scholar
  17. [GMR88]
    S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptative chosen-message attacks. Siam J. Comput., 1988, Vol. 17, pp. 281–308.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [GMRa89]
    S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. Siam J. Comput., 1989, Vol. 18, No 1, pp. 186–208.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [GQ88a]
    L. C. Guillou and J.-J. Quisquater. Efficient digital public-key signatures with shadow. Advances in cryptology, Proceedings of CRYPTO’ 87, Lecture Notes in Computer Science, No 304, p. 223, Springer-Verlag, 1988.Google Scholar
  20. [GQ89a]
    L.C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In C. G. Günther, editor, Advances in Cryptology, Proceedings of EUROCRYPT’ 88, Lecture Notes in Computer Science, No 330, pp. 123–128, Springer-Verlag, 1988.Google Scholar
  21. [GQ89b]
    L.C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme resulting from zero-knowledge. Advances in Cryptology, Proceedings of CRYPTO’ 88, Lecture Notes in Computer Science, No 403, pp. 216–231, Springer-Verlag, 1989.Google Scholar
  22. [GUQ91]
    L. C. Guillou, M. Ugon and J.-J. Quisquater. The Smart Card: A Standardized Security Device Dedicated to Public Cryptology. Contemporary Cryptology: The Science Information Integrity, edited by G. J. Simmons, IEEE Press, 1991.Google Scholar
  23. [HS91]
    S. Haber and W.S. Stornetta. How to Time-Stamp a Digital Document. Advances in Cryptology, Proceedings of CRYPTO’ 90, Lecture Notes in Computer Science, No 537, pp. 437–455, Springer-Verlag, 1991.Google Scholar
  24. [L81]
    L. Lamport. Password Authentication With Insecure Communication. Comm. of ACM, Vol. 24, No 11, pp. 770–772, Nov. 1981.CrossRefMathSciNetGoogle Scholar
  25. [McC90]
    K. Mc Curley. Odd and ends from cryptology and computational number theory. Cryptology and computational number theory, edited by C. Pomerance, AMS short course, pp. 145–166, 1990.Google Scholar
  26. [Mer79]
    R. C. Merkle. A Certified Digital Signature. Advances in Cryptology, Proceedings of CRYPTO’ 89, Lecture Notes in Computer Science, No 435, pp. 218–238, Springer-Verlag, 1989.CrossRefGoogle Scholar
  27. [NY89]
    M. Naor and M. Yung. Universal One-way Hash Functions and their Cryptographic Applications. Proceedings of the 21 st Symposium on Theory of Computing, STOC’89, pp. 33–43, 1989.Google Scholar
  28. [Q87]
    J.-J. Quisquater. Secret distribution of keys for public-key system. Advances in cryptology, Proceedings of CRYPTO’ 87, Lecture Notes in Computer Science, No 293, pp. 203–208, Springer-Verlag, 1987.Google Scholar
  29. [R80]
    M. O. Rabin. Probabilistic algorithms for testing primality. Journal on Number Theory, Vol. 12, pp. 128–138, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Sh85]
    A. Shamir. Identity-based cryptosystems and signatures schemes. Advances in cryptology, Proceedings of CRYPTO’ 84, Lecture Notes in Computer Science, No 196, pp. 47–53, Springer-Verlag, 1985.Google Scholar
  31. [SRA81]
    A. Shamir, R. Rivest and L. Adleman. Mental Poker. The Mathematical Gardner, edited by D. A. Klarner, Wadsworth International, 1981.Google Scholar
  32. [Vau93]
    S. Vaudenay. Mémoire de Magistère de Mathématiques Fondamentales et Appliquées et d’Informatique. GRECC, Laboratoire d’Informatique de l’Ecole Normale Supérieure, Paris, 1993.Google Scholar
  33. [vH92]
    E. van Heijst. Special Signature Schemes. Thesis for the degree of Doctor at the Eindhoven University of Technology (The Netherlands), July 1992.Google Scholar
  34. [WP90]
    M. Waidner and B. Pfitzmann. The Dining Cryptographers in the Disco: Unconditional Sender and Recipient Untraceability with computationally Secure Serviceability. Advances in cryptology, Proceedings of EUROCRYPT’ 89, Lecture Notes in Computer Science, No 434, p.690, Springer-Verlag, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Olivier Delos
    • 1
  • Jean-Jacques Quisquater
    • 2
  1. 1.Dept of Computer Sc. (INGI)Louvain-la-NeuveBelgium
  2. 2.Dept of Elec. Eng. (DICE)Louvain-la-NeuveBelgium

Personalised recommendations