Advertisement

Wavelength calibration of objective prism plates by transformation from direct plates

  • Hans-Joachim Tucholke
II Three-Dimensional Distribution of Galaxies
  • 177 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 310)

Abstract

The zero points for galaxy redshift measurements from objective prism plates (dispersion 246 nm mm−1 at Hγ) are obtained through transformation of object positions from the corresponding direct plates. Approximately 1000 G-stars per plate, classified automatically, are used.

On the direct plate, positions in x and y are computed from intensity-weighted first moments. On the objective prism plate object positions are given in x through the Call-break at 400 nm and in y through marginal fits to the unwidened spectra. Redshifts are obtained from the difference between the expected and the measured Call-break positions in the galaxy spectra. The transformation equations include quadratic terms in the direction of dispersion. The inclusion of third-order and colour terms is discussed.

We present the transformation characteristics for three adjacent fields near the South Galactic Pole. The mean residuals are approximately 5 μm, corresponding to a red-shift error of about 700 km s−1 at z = 0.

This is an extended version of the contribution presented at the IAU Colloquium No. 100 at Belgrade (Tucholke et al. 1988).

Keywords

Transformation Model Direct Plate Colour Term Wavelength Calibration Galaxy Redshift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beard, S.M., Cooke, J.A., Emerson, D., MacGillivray, H.T., Kelly, B.D., 1986. Mon. Not. R. astr. Soc., 219, 251.Google Scholar
  2. Clowes, R.G., Emerson, D., Smith, M.G., Wallace, P.T., Cannon, R.D., Savage, A., Boksenberg, A., 1980. Mon. Not. R. astr. Soc., 193, 415.Google Scholar
  3. Gericke, V., 1988. These Proceedings, p. 235.Google Scholar
  4. Horstmann, H., 1988. These Proceedings, p. 111.Google Scholar
  5. Murray, C.A., 1984. In IAU Coll. No. 78, Astronomy with Schmidt-Type Telescopes, ed. Capaccioli, M., Reidel, Dordrecht, p. 217.Google Scholar
  6. Murray, C.A., Corben, P.M., 1979. Mon. Not. R. astr. Soc., 187, 723.Google Scholar
  7. Nandy, K., Reddish, V.C., Tritton, K.P., Cooke, J.A., Emerson, D., 1977. Mon. Not. R. astr. Soc., 187, 63p.Google Scholar
  8. Schuecker, P., 1988. These Proceedings, p. 142.Google Scholar
  9. Stock, J., 1984. Rev. Mexicana Astr. Astrofis., 9, 77.Google Scholar
  10. Stock, J., 1986. In IAU Symposium No. 109, Astrometric Techniques, eds. Eichhorn, H.K., Leacock, R.J., Reidel, Dordrecht, p. 253.Google Scholar
  11. Stock, J., Osborn, W., 1980. Astr. J., 85, 1366.CrossRefGoogle Scholar
  12. Tucholke, H.-J., 1983. Diploma Thesis, Astr. Inst. Univ. Münster.Google Scholar
  13. Tucholke, H.-J., Schuecker, P., Horstmann, H., Seitter, W., 1988. In IAU Coll. No. 100, Fundamentals of Astrometry, eds. Pakvor, L, Eichhorn, H.K., in press.Google Scholar
  14. Weis, E.W., Upgren, A.R., Dawson, D.W., 1981. Astr. J., 86, 246.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Hans-Joachim Tucholke
    • 1
  1. 1.Astronomisches InstitutWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations