Mathematical aspects of internal magnitude calibration

  • D. Homberg
VII Methods and Tools
Part of the Lecture Notes in Physics book series (LNP, volume 310)


The internal calibration method, introduced by Bunclark and Irwin, is presented as a non-linear optimization process. Two different approaches to solve the problem are presented, the conjugate gradient method, a deterministic optimization algorithm, and simulated annealing, belonging to the class of Monte Carlo methods. Tests with model data show that the conjugate gradient method is superior to simulated annealing in computational effort, if the latter is defined by the number of equivalent functional evaluations. Both methods lead to the same average residual of the objective function. Considering the simplicity of the algorithm, simulated annealing suggests itself for solving optimization problems of high complexity with small theoretical effort.


  1. Bunclark, P., Irwin, M.J., 1983. In Statistical Methods in Astronomy, ESA SP-201, p. 195.Google Scholar
  2. Cèrny, V., 1985. J. Optim. Theory and Appl., 45, 41.CrossRefGoogle Scholar
  3. Homberg, D., 1988. In IAU Workshop Astrophotography, ed. Marx, S., Springer-Verlag, Berlin, p. 77.Google Scholar
  4. Honeycutt, R.K., Chaldu, R.S., 1970. AAS Photo-Bull., 2, 14.Google Scholar
  5. Horstmann, H., 1988. These proceedings, p. 111.Google Scholar
  6. Jeffrey, W., Rosner, R., 1986. Astrophys. J., 310, 473.CrossRefGoogle Scholar
  7. Kirkpatrick, S., Gelatt Jr., S.D., Vecchi, M.P., 1983. Science, 220, 671.Google Scholar
  8. Laarhoven, P.J.M. van, Aarts, E.H.L., 1987. Simulated Annealing: Theory and Applications, Reidel, Dordrecht.Google Scholar
  9. Luenberger, D.G., 1972. Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA. *** DIRECT SUPPORT *** A3418241 00008Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. Homberg
    • 1
  1. 1.Astronomisches InstitutWestfalische Wilhelms-UniversitätMunsterGermany

Personalised recommendations