Equations of motion for vortices in 2-D easy-plane magnets

  • G. M. Wysin
  • F. G. Mertens
Part I: Magnetic and Optical Systems
Part of the Lecture Notes in Physics book series (LNP, volume 393)


The dynamics of individual and pairs of vortices in a classical easy-plane Heisenberg spin model is studied. There are two types of vortices possible: in-plane, with small out-of-plane spin components present only at nonzero velocity, and out-of-plane, with large out-of-plane spin components even when at rest. As a result, the two types are governed by different equations of motion when in the presence of neighboring vortices. We review the static spin configurations and the changes due to non-zero velocity. An equation of motion introduced by Thiele and used by Huber will be re-examined. However, that equation may be inadequate to describe vortices in the XY model, due to their zero gyrovector. An alternative dynamic equation is developed, and effective mass and dissipation tensors are defined. These are relevant for models with spatially anisotropic coupling in combination with easy-plane spin exchange.


Spin Component Canonical Momentum Mass Tensor Heisenberg Ferromagnet Nonzero Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.G. Mertens, A.R. Bishop, G.M. Wysin and C. Kawabata, Phys. Rev. Lett. 59, 117 (1987); Phys. Rev. B39, 591 (1989).PubMedGoogle Scholar
  2. 2.
    D.L. Huber, Phys. Lett. 76A, 406 (1980).Google Scholar
  3. 3.
    D.L. Huber, Phys. Rev. B26, 3758 (1982).Google Scholar
  4. 4.
    S. Takeno and S. Homma, Prog. Theor. Phys. 64, 1193 (1980); 65, 172 (1980).Google Scholar
  5. 5.
    S. Hikami and T. Tsuneto, Prog. Theor. Phys. 63, 387 (1980).Google Scholar
  6. 6.
    G.M. Wysin, M.E. Gouvêa, A.R. Bishop and F.G. Mertens, in Computer Simulation Studies in Condensed Matter Physics, D.P. Landau, K.K. Mon and H.-B. Schüttler, eds., Springer-Verlag 1988.Google Scholar
  7. 7.
    M.E. Gouvêa, G.M. Wysin, A.R. Bishop and F.G. Mertens, Phys. Rev. B39, 11,840 (1989).Google Scholar
  8. 8.
    A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973); J. Appl. Phys. 45, 377 (1974).Google Scholar
  9. 9.
    L.D. Landau and E.M. Lifshitz, Phys. Z. Sowjet 8, 153 (1935).Google Scholar
  10. 10.
    F.H. de Leeuw, R. van den Poel and U. Enz, Rep. Prog. Phys. 43, 44 (1980).Google Scholar
  11. 11.
    A.R. Völkel, F.G. Mertens, A.R. Bishop and G.M. Wysin, Phys. Rev. B43, 5992 (1991).Google Scholar
  12. 12.
    J. Tjon and J. Wright, Phys. Rev. B15, 3470 (1977).Google Scholar
  13. 13.
    E.K. Sklyanin, Sov. Phys. Dokl. 24, 107 (1979).Google Scholar
  14. 14.
    H.C. Fogedby, in Theoretical Aspects of Mainly Low-Dimensional Magnetic Systems, Springer-Verlag (1980).Google Scholar
  15. 15.
    The effects of damping in this formalism are somewhat complicated and will be given elsewhere.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. M. Wysin
    • 1
  • F. G. Mertens
    • 2
  1. 1.Kansas State UniversityManhattanUSA
  2. 2.Physics InstituteUniversity of BayreuthBayreuthGermany

Personalised recommendations