Advertisement

Central peak signatures from vortices in 2D easy-plane antiferromagnets

  • F. G. Mertens
  • A. Völkel
  • G. M. Wysin
  • A. R. Bishop
Part I: Magnetic and Optical Systems
  • 173 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

We investigate the dynamics of a classical, anisotropic Heisenberg model. Assuming a dilute gas of ballistically moving vortices above the Kosterlitz-Thouless transition temperature, we calculate the dynamic form factors \(S(\vec q,\omega )\) and test them by combined Monte Carlo-molecular dynamics simulations. For both in-plane and out-of-plane correlations we predict and observe central peaks (CP) which are, however, produced by quite different mechanisms, depending on whether the correlations are globally or locally sensitive to the presence of vortices. The positions of the peaks in q-space depend on the type of interaction and on the velocity dependence of the vortex structure. For a ferromagnet both CP's are centered at q = 0; for an antigerromagnet the static vortex structure is responsible for a CP at the Bragg points, while deviations from it due to the vortex motion produce a CP at q = 0. By fitting the CP's to the simulation data we obtain the correlation length and the mean vortex velocity.

Keywords

Central Peak Vortex Solution Free Vortex Graphite Intercalation Compound Vortex Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.P. Regnault, J.P. Boucher, J. Rossat-Mignot, J. Bouillot, R. Pynn, J.Y. Henry, J.P. Renard, Physica 136 B, 329 (1986)Google Scholar
  2. 1a.
    S.T. Bramwell, M.T. Hutchings, J. Norman, R. Pynn, P. Day, J. Phys. C 8, 1435 (1988)Google Scholar
  3. 2.
    D.G. Wiesler, H. Zabel, S.M. Shapiro, Physica B 156 + 157, 292 (1989)Google Scholar
  4. 3.
    M. Pomerantz, Surface Science 142, 556 (1984)CrossRefGoogle Scholar
  5. 3a.
    D.I. Head, B.H. Blott, D. Melville, J. Phys. C 8, 1649 (1988)Google Scholar
  6. 4.
    F.G. Mertens, A.R. Bishop, G.M. Wysin, C. Kawabata, Phys. Rev. B 39, 591 (1989)Google Scholar
  7. 5.
    M.E. Gouvêa, G.M. Wysin, A.R. Bishop, F.G. Mertens, Phys. Rev. B 39, 11840 (1989)Google Scholar
  8. 6.
    H.J. Mikeska, J. Phys. C 13, 2913 (1980)Google Scholar
  9. 7.
    A.R. Völkel, F.G. Mertens, A.R. Bishop, G.M. Wysin, Phys. Rev. B 43, 5992 (1991)Google Scholar
  10. 8.
    D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. G. Mertens
    • 1
  • A. Völkel
    • 1
  • G. M. Wysin
    • 2
  • A. R. Bishop
    • 3
  1. 1.University of BayreuthGermany
  2. 2.Kansas State UniversityManhattanUSA
  3. 3.Los Alamos National LaboratoryUSA

Personalised recommendations