Advertisement

Dissipative superluminous Brillouin solitons in an optical-fiber ring cavity

  • Carlos Montes
  • Eric Picholle
  • Jean Botineau
  • Olivier Legrand
  • Claude Leycuras
Part I: Magnetic and Optical Systems
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

Generation of large-scale spatio-temporal coherent structures caused by stimulated Brillouin backscattering of a narrow-band laser wave in a large-gain one-dimensional nonlinear medium is studied by comparing the numerical simulations and the analytical asymptotics of the three-wave resonant model to actual experiments in a single-mode optical-fiber. This comparison recently allowed us to predict [1] and to perform the first experimental observation [2] of the “superluminous” Brillouin soliton backward propagating with respect to the cw pump in an optical-fiber ring-cavity.

Keywords

Ring Cavity Pump Wave Stokes Pulse Pump Amplitude Pump Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    O. Legrand and C. Montes, J. Phys. Colloq. France, 50, C3–147 (1989).Google Scholar
  2. [2]
    E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, Phys. Rev. Lett. 66, 1454 (1991).PubMedGoogle Scholar
  3. [3]
    E.P. Ippen and R.H. Stolen, Appl. Phys. Lett. 21, 539 (1972).CrossRefGoogle Scholar
  4. [4]
    D. Cotter, J. Opt. Commun. 4, 10 (1983).Google Scholar
  5. [5]
    C. Montes, Phys. Rev. A 31, 2366 (1985) and references therein.CrossRefPubMedGoogle Scholar
  6. [6]
    M. Maier, Phys. Rev. 166, 113 (1968).Google Scholar
  7. [7]
    W. Kaiser and M. Maier, in Laser Handbook 2, T.F. Arecchi and F.O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972) p. 1077.Google Scholar
  8. [8]
    J. Coste and C. Montes, Phys. Rev. A 34, 3940 (1986)CrossRefPubMedGoogle Scholar
  9. [9]
    J. Botineau, C. Leycuras, C. Montes, and E. Picholle, J. Opt. Soc. Am. B 6, 300 (1989).Google Scholar
  10. [10]
    S.F. Morozov, L.V. Piskunova, M.M. Sushchik, and G.I. Freidman, Sov. J. Quant. Electron. 8, 576 (1978).Google Scholar
  11. [11]
    V.A. Gorbunov, Sov. J. Quant. Electron. 14, 1066 (1984).Google Scholar
  12. [12]
    G.L. Lamb, Jr., Phys. Lett. 29 A, 507 (1969); Rev. Mod. Phys. 43, 99 (1971).Google Scholar
  13. [13]
    J. Pelous and R. Vacher, Solid State Commun. 16, 279 (1975).CrossRefGoogle Scholar
  14. [14]
    J.A. Armstrong, S.J. Sudhanshu, and N.S. Shiren, J. Quant. Elect. QE-6, 591 (1974).Google Scholar
  15. [15]
    K. Nozaki and T. Taniuti, J. Phys. Soc. Jpn. 34, 796 (1973); Y. Oshawa and K. Nozaki, J. Phys. Soc. Jpn. 36, 591 (1974).Google Scholar
  16. [16]
    C.J. McKinstrie, Phys. Fluids 31, 288 (1988)Google Scholar
  17. [17]
    D.J. Kaup, Stud. Appl. Math. 55, 9 (1976).Google Scholar
  18. [18]
    S.C. Chiu, J. Math. Phys. 19, 168 (1978).Google Scholar
  19. [19]
    S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).CrossRefGoogle Scholar
  20. [20]
    M. Douay, P. Bernage, and P. Niay, Opt. Comm. 81, 231 (1991).Google Scholar
  21. [21]
    S.P. Smith, F. Zarinetchi, and S.E. Ezekiel, Opt. Lett; 16, 393 (1991).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Carlos Montes
    • 1
  • Eric Picholle
    • 1
  • Jean Botineau
    • 1
  • Olivier Legrand
    • 1
  • Claude Leycuras
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée, (U.R.A. — C.N.R.S. N° 190)Université de Nice-Sophia AntipolisNice CedexFrance

Personalised recommendations