Equilibrium and nonequilibrium statistical mechanics of a nonlinear model of DNA

  • Mario Techera
  • L. L. Daemen
  • E. W. Prohofsky
Part II: Biosystems and Molecular Systems
Part of the Lecture Notes in Physics book series (LNP, volume 393)


Experimental and theoretical studies indicate that the hydrogen bond stretch mode dominates DNA dynamics close to denaturation temperatures. We analyze a simplified model for DNA which retains only this (nonlinear) degree of freedom. The dynamics and thermodynamics of the system are discussed. In particular, the analytical and numerical results do not exhibit a melting transition but instead a state of pseudo-equilibrium distinct from the state expected from equilibrium thermodynamics. Finally numerical results show that energy transport is unlikely at biological temperatures.


Partition Function Canonical Ensemble Morse Potential Average Kinetic Energy Imino Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.Saenger,'Principles of Nucleic Acid Structure’ (Springer-Verlag,New York,1983).Google Scholar
  2. 2.
    V.Muto,J.Halding,P.L.Christiansen and A.C.Scott, J.Biom.Struct.Dyn. 5,873 (1988);V.Muto, A.C.Scott and P.L. Christiansen, Phys.Let.A 136,33 (1989); S.Yomosa,Phys.Rev.A 27,2120 (1983);S.Takeno,Prog.Theor.Phys.71,395 (1984); C.Zhang,Phys.Rev.A 35, 886 (1987).Google Scholar
  3. 3.
    J.W.Powell,G.S.Edwards,L.Genzel,F.Kremer,A.Wittlin, W.Kubasek and W.Peticolas, Phys.Rev.A 35, 9 (1987).Google Scholar
  4. 4.
    K.Awati, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA (1989).Google Scholar
  5. 5.
    M.Techera, L.L.Daemen and E.W.Prohofsky, Phys.Rev.A 40, 6636 (1989);M.Techera, L.L.Daemen and E.W.Prohofsky, Phys.Rev.A 41, 4543 (1990);M.Techera, L.L.Daemen and E.W.Prohofsky, Phys.Rev.A 42, 1008 (1990).PubMedGoogle Scholar
  6. 6.
    M.Peyrard and A.R.Bishop, Phys.Rev.Let. 62, 2755 (1989).Google Scholar
  7. 7.
    D.J.Scalapino,M.Sears,and R.A.Ferrel, Phys.Rev.B 11,3535 (1975).Google Scholar
  8. 8.
    K.Huang, ‘Statistical Mechanics', 2nd Edition (Wiley,Chichester,1987).Google Scholar
  9. 9.
    M.K.H.Kiessling, J.Stat.Phys.59, 1157, (1990).Google Scholar
  10. 10.
    T.Padmanabhan, Phys.Reports, 188, 285 (1990).Google Scholar
  11. 11.
    M.Techera, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA (1991).Google Scholar
  12. 12.
    R.M.Wartell and A.S.Benight, Phys.Rep.126, 67 (1985).Google Scholar
  13. 13.
    J.McLennan,'Introduction to Non-Equilibrium Statistical Mechanics’ (Prentice Hall,New Jersey,1989).Google Scholar
  14. 14.
    S.Chandrasekhar, Rev.Mod.Phys. 15,1 (1943).Google Scholar
  15. 15.
    T.Schneider and E.Stoll, Phys.Rev.B 17, 1302 (1978).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Mario Techera
    • 1
  • L. L. Daemen
    • 2
  • E. W. Prohofsky
    • 3
  1. 1.Dept. of Molecular BiologyMax Planck Inst. For Biophysical ChemistryGöttingenGermany
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos Alamos
  3. 3.Department of PhysicsPurdue UniversityWest Lafayette

Personalised recommendations