Advertisement

Computer simulation of cardiac arrhythmias and of defibrillating electric shocks. Effects of antiarrhythmic drugs

  • P. Auger
  • A. Coulombe
  • P. Dumée
  • M. -C Govaere
  • J. -M. Chesnais
  • A. Bardou
Part II: Biosystems and Molecular Systems
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

Our computer simulations allow us to study several mechanisms inducing self-sustained conduction troubles leading to an uncoordinated contraction of cardiac fibres related to ventricular tachycardia and fibrillation. These simulations show that an important parameter is the wave length which is defined by the product of the conduction velocity by the refractory period duration. Grossly, any process which makes increase this wave lenght has an antiarrhythmic effect. On the contrary, any process which makes decrease the wave lenght is going to favor reentries and arrhythmias.

Keywords

Conduction Velocity Electric Shock Refractory Period Cardiac Cell Electrical Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Auger P., Bardou A., Coulombe A. and Degonde J. 1988 b. “Computer simulation of ventricular fibrillation”. Mathl Comput. Modelling. 11, 813–822.Google Scholar
  2. [2]
    Auger P., Coulombe A., Govaere M-C., Chesnais J-M., Von Euw D. and Bardou A. 1989. “Computer simulations of mechanisms of ventricular fibrillation and defibrillation”. Innov. Techn. Blot. Med. 10, 299–312.Google Scholar
  3. [3]
    Beeler G.W. and Reuter H. 1977. “Reconstruction of the action potential of ventricular myocardial fibres”. J. Physiol., 268, 177–210.PubMedGoogle Scholar
  4. [4]
    Downar E., Harris L., Mickleborough L., Shaikh N. and Parson I. 1988. “Endocardial mapping of ventricular tachycardia in the intact human ventricle: Evidence for reentry mechanisms”. JACC, 11, 783–791.PubMedGoogle Scholar
  5. [5]
    Janse M.J. and Kleber A.G. 1981. “Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia”. Circ. Res., 49, 1069–1081.PubMedGoogle Scholar
  6. [6]
    Kaplan D.T., Smith J.M., Saxberg Bo E.H. and Cohen R.J. 1988. “Nonlinear dynamics in cardiac conduction”. Math. Biosci. 90, 19–48.PubMedGoogle Scholar
  7. [7]
    Smith J.M. and Cohen R.J. 1984. “Simple finite element model accounts for wide range of cardiac arrhythmias”. US Nat Acad. Sci. Pro., 81, 233–237.Google Scholar
  8. [8]
    Van Capelle and Durrer D. 1980. “Computer simulation of arrhythmias in a network of coupled excitable elements”. Circ. Res., 47, 454–466.PubMedGoogle Scholar
  9. [9]
    Winfree A.T. 1987. When time breaks down. The three dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Auger
    • 1
  • A. Coulombe
    • 2
  • P. Dumée
    • 3
  • M. -C Govaere
    • 3
  • J. -M. Chesnais
    • 2
  • A. Bardou
    • 3
  1. 1.Laboratoire d'EcologieFaculté des SciencesDijonFrance
  2. 2.Laboratoire de Physiologie comparéeUniversité d'OrsayOrsayFrance
  3. 3.INSERM U256Hôpital BroussaisParis Cédex 14France

Personalised recommendations