Asymptotic bi-soliton in diatomic chains

  • Jéróme Leon
Part III: Lattice Excitations and Localised Modes
Part of the Lecture Notes in Physics book series (LNP, volume 393)


The light scattering in a diatomic chain of nonlinearily coupled oscillators is studied on the basis of classical Hamiltonian equation of motion in the continuum limit. The basic process is a localized Brillouin scattering and we prove that the nonlinear interaction of the light-wave with the phonon-wave results in a strong localization and a mutual trapping of the acoustic wave and the reflected light wave. This is shown to corresponds to the exchange of a given acoustic particle whose energy and momentum depend only on the elastic parameters of the chain. We conclude that the nonlinear coupling induces the existence of a new energy level which value does not depend on the initial condition or any other external constraint or parameter. The asymptotic state consists in a sonic wave front followed by two localized structures which eventually coalease onto the wave front.


Acoustic Wave Continuum Limit Nonlinear Coupling Couple Wave Equation Soliton Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J. LEON, Phys. Lett. A152, 178 (1991).Google Scholar
  2. [2]
    M. BARTHES and J.LEON, (Editors), “Nonlinear Coherent Structures”, Lecture Notes in Physics 353, Springer Verlag (1990).Google Scholar
  3. [3]
    M.PEYRARD, S. PNEVMATICOS, N. FLYTZANIS, Phys. Rev. A 36, 903 (1987), D. HOCHTRASSER, H. BUTTNER, H. DESFONTAINES, M. PEYRARD, Phys. Rev. A 38, 5332 (1988), S. PNEVMATICOS, Phys. Rev. Lett. 60, 1534 (1988).Google Scholar
  4. [4]
    G. CARERI, U. BUONTEMPO, F. GALLUZI, A.C. SCOTT, E. GRATTON, E. SHYAMSUNDER, Phys. Rev. B 30, 4689 (1984).Google Scholar
  5. [5]
    A.S. DAVYDOV, Phys. Scripta 20, 387 (1979).Google Scholar
  6. [6]
    J.C. EILBECK, P.S. LOMDAHL, A.C. SCOTT, Phys. Rev. B 30, 4703 (1984).Google Scholar
  7. [7]
    S. TAKENO, Prog. Theor. Phys. Lett., 73, 853 (1985).Google Scholar
  8. [8]
    the technique of multiscale analysis for evolution equations has been studied in details in: F. CALOGERO and V. ECKAUS, Inverse Problems 3, 229 (1987).Google Scholar
  9. [9]
    R.K. DODD, J.C. EILBECK, J.D. GIBBON, H.C. MORRIS, “Solitons and Nonlinear Wave Equations”, in Academic Press (1982). F.CALOGERO, A.DEGASPERIS, “Spectral Transform and Solitons”, North Holland (1982). M.J.ABLOWITZ, H.SEGUR, “Solitons and the Inverse Scattering Transform”, SIAM, Philadelphia (1981).Google Scholar
  10. [10]
    G.L.LAMB Jr, Phys. Rev. A 9, 422 (1974) and A 12 2052 (1975).Google Scholar
  11. [11]
    D.J.KAUP, A.C.NEWELL, Adv. Math. 31, 67 (1979).CrossRefGoogle Scholar
  12. [12]
    J.LEON, Phys. Lett. A 123, 65 (1987) and J. Math. Phys. 29, 2012 (1988).Google Scholar
  13. [13]
    J.LEON, Phys. Lett. A 144, 444 (1990).Google Scholar
  14. [14]
    J.LEON, Phys. Rev. Lett. 66, 1587 (1991).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jéróme Leon
    • 1
  1. 1.Departement de Physique MathématiqueUniversité Montpellier IIMontpellier cdx05France

Personalised recommendations