GAP solitons in 1D asymmetric physical systems

  • J. M. Bilbault
  • C. Tatuam Kamga
  • M. Remoissenet
Part III: Lattice Excitations and Localised Modes
Part of the Lecture Notes in Physics book series (LNP, volume 393)


We present a general approach for studying the nonlinear transmittance and gap solitons characteristics of asymmetric and one dimensional (1 D) systems in the low amplitude or Nonlinear Schrödinger limit. Included in this approach are some novel results on naturally asymmetric systems and systems where the symmetry is broken by an external constant force.


Envelope Function Incoming Wave Asymmetric System Wave Envelope Unperturbed Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.Barday and M.Remoissenet,Phys.Rev.B 41, 10387 (1990).CrossRefGoogle Scholar
  2. 2.
    D.L.Mills and S.E.Trullinger,Phys.Rev.B 36,947 (1987).CrossRefGoogle Scholar
  3. 3.
    C.Martijn de Stercke and J.E.Sipe,Phys.Rev.A 38, 5149 (1988)CrossRefPubMedGoogle Scholar
  4. 4.
    M.Remoissenet,Phys.Rev.B 33, 2386 (1986).CrossRefGoogle Scholar
  5. 5.
    Whitham, Linear and nonlinear waves (Academic Press, New York, 1972)Google Scholar
  6. 6.
    W.Chen and D.L.Mills,Phys.Rev.B 35, 524 (1987).CrossRefGoogle Scholar
  7. 7.
    P.F.Byrd and M.D.Friedman,Handbook of Elliptic integrals(Springer, Berlin, 1954)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. M. Bilbault
    • 1
  • C. Tatuam Kamga
    • 1
  • M. Remoissenet
    • 1
  1. 1.Laboratoire O.S.C.Université de Bourgogne 6DijonFrance

Personalised recommendations