Advertisement

Self-organization and nonlinear dynamics with spatially coherent structures

  • K. H. Spatschek
  • P. Heiermann
  • E. W. Laedke
  • V. Naulin
  • H. Pietsch
Part IV: Two-Dimensional Structures
  • 184 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

In near-integrable soliton-bearing systems spatially coherent states can play an important role. In this contribution we briefly review some of the main phenomena for physically relevant situations. We start with the well-known soliton formation in integrable systems which can be interpreted as the first appearance of self-organization in physics. It is shown here that also in non-integrable Hamiltonian systems solitary waves can self-organize. For dissipative systems, the self organization hypothesis is presented and tested for 2d drift-waves. A socalled self-organization instability is found which shows the growth of a spatially coherent (solitary) structure even in the presence of turbulence. The other finding in this respect, the absence of (Anderson) localization in nonlinear disordered systems, is also briefly mentioned. The soliton, as a collective excitation, can overcome individual chaotic motion. A recent result for the proton motion in two Morse-potentials under the influence of oscillations of the heavy ions, is discussed showing the importance of solitons to create ordered structures and collective transport. Nevertheless, solitary waves can also be the constituents of deterministic (temporal) chaos as shown in the final part of this contribution.

Keywords

Solitary Wave Coherent Structure Spatial Coherence Solitary Wave Solution Collective Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967).Google Scholar
  2. [2]
    E.W. Laedke and K.H. Spatschek, J. Plasma Phys. 28, 469 (1982).Google Scholar
  3. [3]
    K.H. Spatschek, P. Heiermann, E.W. Laedke, V. Naulin, and H. Pietsch, Proc. 2nd Intern. Toki Conf., Toki, Japan (1990).Google Scholar
  4. [4]
    E.W. Laedke and K.H. Spatschek, Phys. Fluids 29, 133 (1986).CrossRefGoogle Scholar
  5. [5]
    V.E. Zakharov and A.B. Shabat, Sov. Phys.-JETP 34, 62 (1972).Google Scholar
  6. [6]
    E.W. Laedke and K.H. Spatschek, Phys. Rev. Lett. 41, 1798 (1978).CrossRefGoogle Scholar
  7. [7]
    E.W. Laedke, R. Blaha, and K.H. Spatschek, J. Math. Phys., in press.Google Scholar
  8. [8]
    A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).CrossRefGoogle Scholar
  9. [9]
    M. Kono and E. Miyashita, Phys. Fluids 31, 326 (1988).Google Scholar
  10. [10]
    K.H. Spatschek, E.W. Laedke, Chr. Marquardt, S. Musher, and H. Wenk, Phys. Rev. Lett. 64, 3027 (1990).PubMedGoogle Scholar
  11. [11]
    A. Hasegawa, Advances in Physics 34, 1 (1985).Google Scholar
  12. [12]
    A. Muhm, A.M. Pukhov, K.H. Spatschek, and V.N. Tsytovich, submitted to Comments on Plasma Physics and Controlled Fusion.Google Scholar
  13. [13]
    V.N. Tsytovich, Theory of Turbulent Plasma (Consultants, New York 1977).Google Scholar
  14. [14]
    A.V. Zolotariuk, St. Pnevmatikos, and A.V. Savin, to appear in Physica D.Google Scholar
  15. [15]
    R. Grauer, K.H. Spatschek, and A.V. Zolotariuk, to be published.Google Scholar
  16. [16]
    I.M. Lifshitz, S.A. Gredeskul, and L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York 1988).Google Scholar
  17. [17]
    J.G. Caputo, A.C. Newell, and M. Shelley, in Lecture Notes in Physics 342, 49 (Springer, Berlin 1989).Google Scholar
  18. [18]
    O. Kluth, E.W. Laedke, H. Pietsch, K.H. Spatschek, and A.V. Zolotariuk, to be published.Google Scholar
  19. [19]
    K. Nozaki and N. Bekki, Physica D 21, 381 (1986).Google Scholar
  20. [20]
    Th. Eickermann and K.H. Spatschek, in Inverse Methods in Action, P.C. Sabatier, ed. (Springer, Berlin 1990), p. 511.Google Scholar
  21. [21]
    E.W. Laedke and K.H. Spatschek, J. Fluid Mech. 223, 589 (1991).Google Scholar
  22. [22]
    K.H. Spatschek, H. Pietsch, and E.W. Laedke, Europhys. Lett. 11, 625 (1990).Google Scholar
  23. [23]
    I.V. Barashenkov, M.M. Bogdan, and V.I. Korobov, Europhys. Lett. 15, 113 (1991).Google Scholar
  24. [24]
    X.-N. Chen and R.-J. Wei, J. Fluid Mech., to appear.Google Scholar
  25. [25]
    H. Friedel, E.W. Laedke, and K.H. Spatschek, to be published.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • K. H. Spatschek
    • 1
  • P. Heiermann
    • 1
  • E. W. Laedke
    • 1
  • V. Naulin
    • 1
  • H. Pietsch
    • 1
  1. 1.Institut für Theoretische Physik IHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations