Advertisement

Competitive interactions and 2-D structures at finite temperatures

  • N. Flytzanis
  • G. Vlastou-Tsinganos
Part IV: Two-Dimensional Structures
  • 171 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

The phase diagram of a triangular lattice with competitive interactions is obtained at finite temperatures. At high temperatures the existence of an incomplete Devil's staircase points to the existence of incommensurate states near the disorder line. 1-d domain walls and large periodicity 2-d domains are discussed.

Keywords

Domain Wall Triangular Lattice Incommensurate Phase Monte Carlo Simulated Annealing Incommensurate State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Yeomans 1988 in “Solid State Physics” Vol 41, eds H. Ehrenreich and D. Turnbull (Academic Press, London) P. 151Google Scholar
  2. 2.
    P. Bak, D. Mukamel, J. Villain and K. Wentowska 1979 Phys. Rev B 19 1710Google Scholar
  3. 3.
    P. Fisher, B. Lebech, G. Meier, B.D. Rainford and O. Vogt 1978 J. Phys. C 11 345Google Scholar
  4. 4.
    F. Axel and S. Aubry 1981 J. Phys. C 14 5433Google Scholar
  5. 5.
    M.E. Fisher and W. Selke 1980 Phys. Rev. Lett. 44 1502CrossRefGoogle Scholar
  6. 6.
    D.A. Huse 1981 Phys. Rev B 24 5180CrossRefGoogle Scholar
  7. 7.
    Y. Frenkel and T. Kontorova 1938 Zh. Eksp. Theor. Phys. 8 89 1340Google Scholar
  8. 8.
    F.Y. Frank and J.H. van der Merwe 1949 Proc. R. Soc. A 198 205Google Scholar
  9. 9.
    J. Kanamori and M. Okamoto 1985 J. Phys. Soc. Japan 54 4636Google Scholar
  10. 10.
    C.R. Fuselier, N.S. Gillis and J.C. Raich 1978 Solid. St. Com 25 747Google Scholar
  11. 11.
    O.G. Mouritsen and A.J. Berlinsky 1982 Phys. Rev. Lett. 48 181Google Scholar
  12. 12.
    E. Coquet, M. Peyrard and H. Büttner 1988 J. Phys. C 21 4895Google Scholar
  13. 13.
    G. Vlastou-Tsinganos 1991 PhD Thesis, University of CreteGoogle Scholar
  14. 14.
    T. Janssen and J.A. Tjon 1982 Phys. Rev. B 25 3767CrossRefGoogle Scholar
  15. 15.
    Y. Ishibashi 1991 J. Phys. Soc. Japan 60 212CrossRefGoogle Scholar
  16. 16.
    R.P. Feynman and A.R. Hibbs "Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)Google Scholar
  17. 17.
    S. Kirkpatrick, C.D.Jr. Gelattand M.P. Vecchi 1983 Science 220 671Google Scholar
  18. 18.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller 1953 J. Chem. Phys. 21 1087CrossRefGoogle Scholar
  19. 19.
    G. Vlastou-Tsinganos, N. Flytzanis and H. Büttner 1990 J. Phys. A 23 225Google Scholar
  20. 20.
    G. Vlastou-Tsinganos, N. Flytzanis and H. Büttner 1990 J. Phys. A 23 4553Google Scholar
  21. 21.
    T. Janssen 1986 “Incommensurate Phases in Dielectrics” Vol 1, eds R.Bline and A.P.Levanyuk (Amsterdam: North Holland)Google Scholar
  22. 22.
    K. Nakanishi and H. Shiba 1982 J. Phys. Soc. Japan 51 2089CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Flytzanis
    • 1
  • G. Vlastou-Tsinganos
    • 1
    • 2
  1. 1.Physics DepartmentUniversity of CreteHeraklionGreece
  2. 2.Foundation for Research and Technology-HellasHeraklionGreece

Personalised recommendations