Nonlinear structure of phase motion from the study of differential equations near resonant tori

  • Michel Planat
Part V: Theoretical Physics
Part of the Lecture Notes in Physics book series (LNP, volume 393)


Phase Motion Chaotic Region Frequency Jump Phase Jump Poincar6 Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J. Guckenheimer and P. Holmes, “Nonlinear oscillations, dynamical systems and bifurcation of vector fields”, Springer Verlag, N.Y. (1983).Google Scholar
  2. [2]
    A.H. Nayfeh, D.T. Mook, “Nonlinear oscillations”, John Wiley & Sons, N.Y. (1979).Google Scholar
  3. [3]
    V.I. Arnold, “Mathematical methods of classical mechanics”, Springer Verlag, N.Y. (1978).Google Scholar
  4. [4]
    A.J. Lichtenberg, M.A. Liebermann, “Regular and stochastic motion”, Springer Verlag, N.Y. (1983).Google Scholar
  5. [5]
    M.C. Gutzwiller, “Chaos in classical and quantum mechanics”, Springer Verlag, N.Y. (1990).Google Scholar
  6. [6]
    A. Chernikov, R. Sagdeev and G. Zaslavsky, “Physics Today, nov. 1988, p. 27.Google Scholar
  7. [7]
    M. Planat, in preparation.Google Scholar
  8. [8]
    B.V. Chirikov, Physics Reports 52, 264 (1979).Google Scholar
  9. [9]
    P. Cvitanovic, M.H. Jensen, L.P. Kadanoff and I. Procaccia, Phys. Rev. Lett. 55, 343 (1985).PubMedGoogle Scholar
  10. [10]
    R.S. Mackay and C. Tresser, Physica 19D, 206 (1986)Google Scholar
  11. [11]
    Y. Gu and J.M. Yuan, Phys. Rev. A 36, 3788 (1987).Google Scholar
  12. [12]
    W. Feller, “An introduction to probability theory and its applications”, John Wiley & Sons, vol. II, p. 51.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Michel Planat
    • 1
  1. 1.Laboratoire de Physique et Métrologie des Oscillateurs associé à l'Université de Franche-Comté-BesançonBesançon

Personalised recommendations