Advertisement

Noise induced bifurcations in simple nonlinear models

  • Karen Lippert
  • Konrad Schiele
  • Ulrich Behn
  • Adolf Kühnel
Part V: Theoretical Physics
  • 171 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 393)

Abstract

For two generalizations of the Stratonovich model with Gaussian white noise (GWN) and dichotomous Markovian process (DMP) the stationary probability density and moments are calculated. The bifurcation pattern of the stationary solution can be changed qualitativly by varying the deterministic or the noise parameters. We show cases where noise induced states and a subcritical bifurcation can be detected only from the knowledge of the variance.

Keywords

Gaussian White Noise Noise Parameter Deterministic Part Stationary Probability Density Parabolic Cylinder Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Kitahara, K.; Horsthemke,W.; Lefever,R.: Phys.Lett. 70A (1979) 377Google Scholar
  2. [2]
    Kitahara,K.; Horsthemke,W.; Lefever,R.; Inaba,Y.: Prog.Theor.Phys. 64 (1980) 1233Google Scholar
  3. [3]
    Klyatskin,V.I.: Izv.VUZ Radiofiz. (UdSSR) 20 (1977) 562Google Scholar
  4. [4]
    Pawula,R.F.: IEEE Trans. Inf.Theory 13 (1967) 33Google Scholar
  5. [5]
    Pawula,R.F.: Internat.J.Control 25 (1977) 238Google Scholar
  6. [6]
    Pomeau,Y.: J.Stat.Phys. 24 (1981) 189Google Scholar
  7. [7]
    Sancho,J.M.; San Miguel,M.: Prog.Theor.Phys. 69 (1983) 1085Google Scholar
  8. [8]
    Behn,U.;Schiele,K.;Teubel,A.:Wiss.Z.KMU Math.-Naturwiss.R. 34 (1985) 6Google Scholar
  9. [9]
    Teubel,A.; Behn,U.; Kühnel,A.: Z.Phys.B Condensed Matter 71 (1988) 393CrossRefGoogle Scholar
  10. [10]
    Behn,U.; Schiele,K.: Dubna-Preprint EE 17-84-300 (1984)Google Scholar
  11. [11]
    Stratonovich,R.L.: Topics in the theory of random noise. Gordon and Breach New York 1967 Vol.2Google Scholar
  12. [12]
    Abramowitz,M.;Stegun,I.A. (eds):Pocketbook of mathematical functions. Thun, Frankfurt/Main Deutsch 1984Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karen Lippert
    • 1
  • Konrad Schiele
    • 1
  • Ulrich Behn
    • 1
  • Adolf Kühnel
    • 1
  1. 1.Sektion Physik der Universität LeipzigLeipzigGermany

Personalised recommendations