Coherent behaviour of single degrees of freedom in an order-to-chaos transition

  • A. Campa
  • A. Giansanti
  • A. Tenenbaum
Part V: Theoretical Physics
Part of the Lecture Notes in Physics book series (LNP, volume 393)


Lyapunov Exponent Coherence Time Chaotic Regime Maximum Lyapunov Exponent Spectral Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    See P. L. Christiansen and A. C. Scott, eds., Davydov's soliton revisited: Selftrapping of vibrational energy in proteins, (Plenum Publishing Co., New York, 1990).Google Scholar
  2. [2]
    A. Campa, A. Giansanti and A. Tenenbaum, Phys. Rev. B36, 4394 (1987).Google Scholar
  3. [3]
    A. Tenenbaum, A. Campa and A. Giansanti, Phys. Lett. A121, 126 (1987).Google Scholar
  4. [4]
    A. Giansanti, A. Campa, D. Levi, O. Ragnisco and A. Tenenbaum, in Ref. [1], p. 439.Google Scholar
  5. [5]
    G. Benettin, L. Galgani and J. M. Strelcyn, Phys. Rev. A14, 2338 (1976).Google Scholar
  6. [6]
    E. Ott, Rev. Mod. Phys. 53, 655 (1981).Google Scholar
  7. [7]
    R.Livi, M. Ruffo, M. Sparpaglione and A. Vulpiani Phys. Rev. A31, 1039 (1985).Google Scholar
  8. [8]
    M. Pettini and M. Landolfi, Phys. Rev. A41, 768 (1990).Google Scholar
  9. [9]
    See, for example, G. Gallavotti: The Elements of Mechanics (Springer, New York, 1983); p. 466–470.Google Scholar
  10. [10]
    G. Benettin and A. Tenenbaum, Phys. Rev. A28, 3020 (1983).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Campa
    • 1
  • A. Giansanti
    • 1
  • A. Tenenbaum
    • 1
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations