Exact periodic solutions for a class of multispeed discrete Boltzmann models

  • H. Cornille
Part V: Theoretical Physics
Part of the Lecture Notes in Physics book series (LNP, volume 393)


Only for multispeed discrete Boltzmann models can we obtain well-defined temperature. Recently different hierarchies of multispeed, multidimensional (d > 1) discrete models have been characterized by their (1 + 1)-dimensional Pde along one axis. Here, for the simplest hierarchy with five independent densities and two speeds which are 1 and either √d or √2 we construct (1+1)-dimensional periodic solutions. The physical corresponding models are the planar square 8νi, d = 2 model and two three-dimensional 14νi, d = 3 models( one of them being the Cabannes model).


Periodic Solution Complete Positivity 14vi Model Shock Wave Solution Nonlinear Dispersive Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Cornille and Y.H. Qian J. Stat. Phys. 61,683,1990; Y.H. Qian, Thesis, Paris ENS, January 1990.Google Scholar
  2. 2.
    H. Cornille to appear in J.Math.Phys 1991; Physics Letters A vo1.154,339,1991, Aspects of Nonlinear Dynamics Brussels December 1990, Springer-Verlag 1991; Advances in Kinetic Theory and Continuum Mechanics ed. R. Gatignol Springer-Verlag 1991, p.109.Google Scholar
  3. 3.
    D. d'Humieres, P. Lallemand and U. Frisch Europhys. Let. 2, 291, 1986Google Scholar
  4. 4.
    H. Cabannes J. Mecan. 14, 703, 1975, Mech.Research Commun. 10,317,1983Google Scholar
  5. 5.
    For a review paper see D. d'Humieres in Proceed. in Physics 46, ed. P. Manneville Springer-Verlag 1989, p186; Discrete Kinetic Theory, Lattice Gas Dynamics ed. R. Monaco, World Scientific 1988; R. Gatignol Lecture Notes in Physics 37, Springer 1975; T Platkowski and R. Illner SIAM Rev.30,213,1988; S.Chen, M. Lee, M. Zhao and G.D. Doolen Physica D37,42,1989; B.T. Nadiga, J.E. Broadwell and B. Sturtevant Rarefied Gas Dynamics, Progr.Astronaut. vol. 116, ed. E.P. Muntz 1988 p.155.Google Scholar
  6. 6.
    H. Cornille Partially Integrable Eqs. in Physics ed R. Conte, Kluwer Academic Publishers, the Netherlands 1990, p39; Lecture Notes in Mathematics 1460, SpringerVerlag 1988 ed. G. Toscani V.Bofi and S.Rionero p.70; Rigorous Methods in Particle Physics ed. S. Ciulli, Springer-Verlag vol. 119, 1990,p.168.Google Scholar
  7. 7.
    H. Cabannes and D. Tiem Complex Syst. 1, 574, 1987Google Scholar
  8. 8.
    H. Cornille the results will be presented in Nonlinear Dispersive Waves ed. Debnath.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • H. Cornille
    • 1
  1. 1.Spht CE SaclayGif-sur YvetteFrance

Personalised recommendations