Collective coordinates by a variational approach: Problems for sine Gordon and ϕ4 models

  • J. G. Caputo
  • N. Flytzanis
Part VI: Mathematical Methods
Part of the Lecture Notes in Physics book series (LNP, volume 393)


Shape Mode Lagrange Equation Mathematical Singularity Antikink Solution Order Variational Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris “Solitons and Nonlinear wave equations” Academic Press (1982)Google Scholar
  2. [2]
    A. C. Scott and D. Mclaughlin “Perturbation analysis of fluxon dynamics” Phys. Rev. A 18, nb. 4 (1978) and references 17 and 18 therein.Google Scholar
  3. [3]
    M. J. Rice and E. J. Mele“Phenomenelogical theory of soliton formation in lihgtly doped polyacetylene” Solid State Comm. 35, p. 487 (1980)Google Scholar
  4. [4]
    G. Reinisch, J. C. Fernandez, N. Flytzanis, M. Taki and S. Pnevmatikos“Phase lock of a weakly biased inhomogeneous long Josephson junction to an external microwave source” Phys. Rev. B 38, nb. 16, p. 11284 (1988)Google Scholar
  5. [5]
    O. Legrand “Kink-antikink dissociation and annihilation: a collective-coordinate description” Phys. Rev. A 36, 5068 (1987)Google Scholar
  6. [6]
    J. G. Caputo and N. Flytzanis “Kink-antikink collisions in sine-Gordon and ø4 models: problems in the variational approach submitted to Phys. Rev. A, December 1991Google Scholar
  7. [7]
    L. Vazquez “A conservative scheme for lagrangian systems” In preparation.Google Scholar
  8. [8]
    R. Flesch “Collective coordinates for non-linear Klein-Gordon field theory” PhD doctoral dissertation, USC, (1987)Google Scholar
  9. [9]
    S. Jeyadev and J. R. Schrieffer “Collective coordinate description of soliton dynamics in trans-polyacetylene-like systems” Synthetic Metals 9, p. 451 (1984)Google Scholar
  10. [10]
    Z. Fei and L. Vazquez “Resonance phenomena in a dynamcal system with two degrees of freedom” submitted to Physica DGoogle Scholar
  11. [11]
    D. K. Campbell, J. F. Schonfeld and C. A. Wingate “Resonance structure in kink-antikink interactions in ø4 theory” Physica 9D, p. 451 (1983Y)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. G. Caputo
    • 1
  • N. Flytzanis
    • 2
  1. 1.LESP, INSA and URA CNRS 230Mont-Saint-Aignan cedexFrance
  2. 2.Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations