Exact solution of the perturbed sine-Gordon breather problem

  • Erich F. Mann
Part VI: Mathematical Methods
Part of the Lecture Notes in Physics book series (LNP, volume 393)


For the Cauchy problem of a sine-Gordon breather under the action of arbitrary, small perturbations an exact solution in form of quadratures is presented. No application of inverse scattering methods is made. Besides standard methods above all Bäcklund transformations are utilized. The adiabatic approximation originates in an integral form in quite a natural manner. The complete solution allows us to derive expressions for the radiation of energy. Examples for constant external force are considered in more detail.


Adiabatic Approximation Discrete Part Breather Solution Soliton Pair Discrete Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Seeger: Solitons in Crystals, in: Continuum Models of Discrete Systems, Eds. E. Kröner, K.H. Anthony. University of Waterloo, Waterloo (Ontario) 1980, p. 253.Google Scholar
  2. 2.
    A.R. Bishop, J.A. Krumhansl, and S.E. Trullinger, Physica 1D, 1 (1980).Google Scholar
  3. 3.
    Yu. S. Kivshar and B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989).CrossRefGoogle Scholar
  4. 4.
    A. Kochendörfer and A. Seeger, Z. Phys. 127, 533 (1950).Google Scholar
  5. 5.
    A. Seeger and A. Kochendörfer, Z. Phys. 130, 321 (1951).CrossRefGoogle Scholar
  6. 6.
    A. Seeger, H. Donth, and A. Kochendörfer, Z. Phys. 134, 173 (1953).CrossRefGoogle Scholar
  7. 7.
    E. Mann, to be published.Google Scholar
  8. 8.
    E. Mann, phys. stat. sol. (b) 144, 115 (1987).Google Scholar
  9. 9.
    D.W. McLaughlin and A.C. Scott, Phys. Rev. A18, 1652 (1978).Google Scholar
  10. 10.
    V.I. Karpman, E.M. Maslov, and V.V. Solov'ev, Sov. Phys-JETP 57, 167 (1983).Google Scholar
  11. 11.
    J. Eßlinger, Diplomarbeit, Universität Stuttgart 1988.Google Scholar
  12. 12.
    R. Döttling, Diplomarbeit, Universität Stuttgart 1989.Google Scholar
  13. 13.
    R. Döttling, J. Eßlinger, W. Lay, and A. Seeger, in: Nonlinear Coherent Structures, Lecture Notes in Physics, Vol. 353, Eds. M. Barthes, J. Léon. Springer, Berlin 1990, p. 193.Google Scholar
  14. 14.
    U. Bliiher, Diplomarbeit, Universität Stuttgart 1990.Google Scholar
  15. 15.
    B.A. Malomed, Physica 27D, 113 (1987); cf. the first part of eq. (7.6).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Erich F. Mann
    • 1
  1. 1.Max-Planck-Institut für Metallforschung, Institut für PhysikStuttgart 80Germany

Personalised recommendations