Localized self-similar structures for a coupled nls equation: An approximate analysis

  • L. Gagnon
Part VI: Mathematical Methods
Part of the Lecture Notes in Physics book series (LNP, volume 393)


We perform an approximate analysis of some particular self-similar solutions of the (2+1)-dimensional coupled nonlinear Schrödinger equation. These solutions are invariant under a point-symmetry subgroup of the model that involves the Schrödinger conformal symmetry. We use a variational approach to classify them and to determine their approximate structures.


  1. 1.
    N. B. Abraham and W. J. Firth, J. Opt. Soc. Am. B 7, 951 (1990)Google Scholar
  2. 2.
    P. D. Maker and R. W. Terhune, Phys.Rev. A 137, 801 (1965)CrossRefGoogle Scholar
  3. 3.
    A. E. Kaplan, Opt. Lett. 8, 560 (1983)Google Scholar
  4. 4.
    W. J. Firth, A. Fitzgerald and C. Paré, J. Opt. Soc. Am B 7, 1087 (1990)Google Scholar
  5. 5.
    P. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986)Google Scholar
  6. 6.
    E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956)Google Scholar
  7. 7.
    F. J. Bureau, Ann. Mat. Pura Appl. IV 41, 163 (1972)Google Scholar
  8. 8.
    D. Anderson, Phys. Scr. 18, 35 (1978)Google Scholar
  9. 9.
    L. Gagnon and C. Paré, J. Opt. Soc. Am. A 8, 601 (1991)Google Scholar
  10. 10.
    J. H. Marburger and F. S. Felber, Phys. Rev. A 17, 335 (1978)Google Scholar
  11. 11.
    R. Y. Chiao, E. Garmire and C. H. Townes, Phys. Rev. Lett 13, 479 (1964)Google Scholar
  12. 12.
    D. Pohl, Opt. Commun. 2, 305 (1970)Google Scholar
  13. 13.
    J. J. Rasmussen and K. Rypdal, Physica Scripta 33, 481 (1986); K. Rypdal and J. J. Rasmussen, Physica Scripta 33, 498 (1986)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. Gagnon
    • 1
  1. 1.Centre d'Optique Photonique et LaserSte-FoyCanada

Personalised recommendations