Advertisement

Multifunctions as Approximation Operations in Generalized Approximation Spaces

  • P. Maritz
Conference paper
  • 569 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1424)

Abstract

An approximation space can be defined as a quintuple \( \mathcal{A} = (T,U,F,\Phi ,\Gamma ) \), where F: T → U is a multifunction and Φ and Γ are unary operations on the power set of U.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.M. Cohn. Universal algebra. D. Reidel, Dordrecht, 1981.zbMATHGoogle Scholar
  2. 2.
    P.R. Halmos. Naive set theory. Springer, New York, 1974.zbMATHGoogle Scholar
  3. 3.
    P. Maritz. Glasnik Matematički 31(51) (1996), 159–178.zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Münnich and A. Száz. Publ. Inst. Math. (Beograd) (N.S.) 33(47) (1983), 163–168.MathSciNetGoogle Scholar
  5. 5.
    Z. Pawlak. Internat. J. Comput. Inform. Sci. 11(1982), 341–356.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J.A. Pomykała. Bull. Polish Acad. Sci. Math. 35 (1987), 653–662.zbMATHMathSciNetGoogle Scholar
  7. 7.
    U. Wybraniec-Skardowska. Bull. Polish Acad. Sci. Math. 37 (1989),51–62.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Y.Y. Yao and T.Y. Lin. Intelligent Automation and Soft Computing, An International Journal 2 (1996), 103–120.Google Scholar
  9. 9.
    Y.Y. Yao, S.K.M. Wong and T.Y. Lin. In: Rought sets and data mining, analysis for imprecise data. Ed. T.Y. Lin and N. Cercone. Kluwer, Boston, 1997, 47–75.Google Scholar
  10. 10.
    W. Żakowski. Demon. Math. 16 (1983), 761–769.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Maritz
    • 1
  1. 1.StellenboschSouth Africa

Personalised recommendations