Advertisement

Normal and Shear Forces Between Polymer Brushes

  • Gary S. Grest
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 138)

Abstract

Surface-polymer interactions are important in many technological applications, including colloidal stablization and adherence. Recently there has been considerable progress in understanding these interactions and the resulting forces between polymer-bearing surfaces. End-grafted polymers, commonly referred to as polymer brushes, are one example of a polymer-surface complex which has many interesting properties. In this article, recent progress in understanding the normal and shear forces between polymer brushes is reviewed with emphasis on the contributions from molecular simulations. These simulations show that under steady-state shear flow, some of the individual chains of a polymer brush stretch in the direction of flow while most are buried inside of the brush and are not affected by the shear flow. The height of the brush is only weakly dependent on the shear rate in contrast with several theoretical models. When two surfaces bearing end-grafted chains are brought into contact the normal force increases rapidly with decreasing plate separation, while the shear force is in most cases significantly smaller, particularly for large compressions. However, for weak compression, the range and the magnitude of the shear force depends on both the solvent quality and shear rate. These results, first observed experimentally using the surface force apparatus and recently confirmed in simulation, suggest a way to dramatically reduce the frictional force between two surfaces. For small relative velocity of the two surfaces, the surfaces slide pass each other with almost no change in the average radius of gyration of the chains or the amount of interpenetration of chains from the two surfaces. However, for large shear rates, there is significant stretching and some disentanglement of the chains.

Keywords

Shear Rate Shear Force Normal Force Chem Phys Polymer Brush 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Napper DH (1983) Polymeric Stabilization of Colloidal Dispersions. Academic, LondonGoogle Scholar
  2. 2.
    Russell WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Brown HR (1993) Macromolecules. 26: 166; (1996) MRS Bulletin 21(1): 24Google Scholar
  4. 4.
    Klein J(1996) Ann Rev Mat Sci 26: 581Google Scholar
  5. 5.
    Hu HW, Granick S (1992) Science 258: 1339CrossRefGoogle Scholar
  6. 6.
    Thompson PA, Robbins MO (1990) Science 250: 792CrossRefGoogle Scholar
  7. 7.
    Thompson PA, Grest GS, Robbins MO (1992) Phys Rev Lett 68: 3448; Thompson PA, Robbins MO, Grest GS (1995) Israel J Chem 35: 93CrossRefGoogle Scholar
  8. 8.
    Manias E, Bitsanis I, Hadziioannou G, ten Brinke G (1996) Europhys Lett 33: 371CrossRefGoogle Scholar
  9. 9.
    Manias E, Hadziioannou G, ten Brinke G (1996) Langmuir 12: 4587CrossRefGoogle Scholar
  10. 10.
    Khare R, de Pablo JJ, Yethiraj A (1996) Macromolecules 29: 7910CrossRefGoogle Scholar
  11. 11.
    Alexander S (1977) J Phys Paris 38: 983Google Scholar
  12. 12.
    De Gennes PG (1980) Macromolecules 13: 1069CrossRefGoogle Scholar
  13. 13.
    Auroy P, Auvray L, Léger L (1991) Macromolecules 24: 5158CrossRefGoogle Scholar
  14. 14.
    Auroy P, Auvray L ( 1992) Macromolecules 25: 4134CrossRefGoogle Scholar
  15. 15.
    Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1990)Macromolecules 23: 571CrossRefGoogle Scholar
  16. 16.
    Klein J, Perahia D, Warburg S (1991) Nature 352: 143CrossRefGoogle Scholar
  17. 17.
    Ansarifar MA, Luckham PF (1988) Polymer 29: 329CrossRefGoogle Scholar
  18. 18.
    Patel SS, Tirrell M (1989) Ann Rev Phys Chem 40: 597CrossRefGoogle Scholar
  19. 19.
    Gast AP, Munch MR (1989) Polymer Comm 30: 324Google Scholar
  20. 20.
    Parsonage E, Tirrell M, Watanabe H, Nuzzo RG 1987 (1991)Macromolecules 24Google Scholar
  21. 21.
    Field JB, Toprakcioglu C, Ball RC, Stanley HB, Dai L, Barford W, Penfold J, Smith G, Hamilton W (1992) Macromolecules 25: 434CrossRefGoogle Scholar
  22. 22.
    Granick S, Herz J (1985) Macromolecules 18: 460CrossRefGoogle Scholar
  23. 23.
    Kent MS, Lee LT, Farnoux B, Rondelez F (1992) Macromolecules 25: 6240CrossRefGoogle Scholar
  24. 24.
    Kent MS, Lee LT, Factor BJ, Rondelez F, Smith GS (1995) J Chem Phys 103: 2320CrossRefGoogle Scholar
  25. 25.
    Bates FS (1991) Science 251: 898CrossRefGoogle Scholar
  26. 26.
    Halperin A, Tirrell M, Lodge TP (1991) AdvPolym Sci 100: 31Google Scholar
  27. 27.
    Milner ST (1991) Science 251: 905CrossRefGoogle Scholar
  28. 28.
    Grest GS, Murat M (1995) In: Binder K (ed) Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press, New York, p 476Google Scholar
  29. 29.
    Szleifer I, Carignano MA (1996) In: Prigogine I, Rice SA (ed) Advances in Chemical Physics. Wiley, New York, Vol. 94, p. 165CrossRefGoogle Scholar
  30. 30.
    Watanabe H, Tirrell M (1993) Macromolecules 26: 6455CrossRefGoogle Scholar
  31. 31.
    Dhoot S, Watanabe H, Tirrell M (1994) Colloid Surf A 86: 47CrossRefGoogle Scholar
  32. 32.
    Dan N, Tirrell M (1993) Macromolecules 26: 6467CrossRefGoogle Scholar
  33. 33.
    Milner ST, Witten TA, Cates ME (1988) Macromolecules 21: 2610CrossRefGoogle Scholar
  34. 34.
    Milner ST, Wang ZG, Witten TA (1989) Macromolecules 22: 489CrossRefGoogle Scholar
  35. 35.
    Zhulina EB, Borisov OV, Pryamitsyn VA ( 1990) J Colloid Interface Sci 137: 495CrossRefGoogle Scholar
  36. 36.
    Semenov AN (1985) SovPhys JETP 61: 733Google Scholar
  37. 37.
    Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1988) Nature 332: 712; (1990) Macromolecules 23: 571CrossRefGoogle Scholar
  38. 38.
    Cosgrove T (1990) J Chem Soc Faraday Trans 86: 1323CrossRefGoogle Scholar
  39. 39.
    Auroy P, Auvray L ( 1993) J Phys II France 3: 227CrossRefGoogle Scholar
  40. 40.
    Field JB, Toprakcioglu C, Dai L, Hadziioannou G, Smith G, Hamilton W (1992) J Phys II France 2: 2221CrossRefGoogle Scholar
  41. 41.
    Perahia D, Weisler D, Satija SK, Fetters LJ, Sinha SK, Milner ST (1994) Phys Rev Lett 72: 100CrossRefGoogle Scholar
  42. 42.
    Murat M, Grest GS (1989) Macromolecules 22: 4054CrossRefGoogle Scholar
  43. 43.
    Chakrabarti A, Toral R (1990) Macromolecules 23: 2016CrossRefGoogle Scholar
  44. 44.
    Lai PY, Binder K (1991) J Chem Phys 95: 9288CrossRefGoogle Scholar
  45. 45.
    Lai PY, Binder K ( 1992) J Chem Phys 97: 586CrossRefGoogle Scholar
  46. 46.
    Grest GS, Murat M (1993) Macromolecules 26: 3108CrossRefGoogle Scholar
  47. 47.
    Grest GS (1994) Macromolecules 27: 418CrossRefGoogle Scholar
  48. 48.
    Raphaël E, Pincus P, Fredrickson GH (1993) Macromolecules 26: 1996CrossRefGoogle Scholar
  49. 49.
    Aubouy M, Fredrickson GH, Pincus P, Raphaël E (1995) Macromolecules 28: 2979CrossRefGoogle Scholar
  50. 50.
    Milner St (1990) J Chem Soc Faraday Trans 86: 1349CrossRefGoogle Scholar
  51. 51.
    Wijmans CM, Scheutjens JMHM, Zhulina EB (1992) Macromolecules 25: 2657CrossRefGoogle Scholar
  52. 52.
    Wijmans CM, Zhulina EB, Fleer GJ (1994) Macromolecules 27: 3238CrossRefGoogle Scholar
  53. 53.
    Shim DFK, Cates ME (1989) J Phys, Paris, 50. 3535Google Scholar
  54. 54.
    Lai PY, Halperin A (1991) Macromolecules 24: 4981CrossRefGoogle Scholar
  55. 55.
    Milner ST (1991) Macromolecules 24: 3704CrossRefGoogle Scholar
  56. 56.
    Brinkman HC (1947) Appl Sci Res A1: 27Google Scholar
  57. 57.
    Klein J, Kamiyama Y, Yoshizawa H, Israelachvili JN, Fredickson GH, Pincus P, Fetters LJ (1993) Macromolecules 26: 5552CrossRefGoogle Scholar
  58. 58.
    Dhinojwala A, Granick S (1997) J Chem Soc Faraday Trans 92: 619CrossRefGoogle Scholar
  59. 59.
    Cho YK, Dhinojwala A, Granick S (1997) J. Polym. Sci. Polym. Phys. Ed. 35: 2961CrossRefGoogle Scholar
  60. 60.
    Fredrickson GH, Pincus PA (1991) Langmuir 7: 786CrossRefGoogle Scholar
  61. 61.
    Grest GS, J Chem Phys 105: 5532Google Scholar
  62. 62.
    Peters GH, Tildesley DJ (1995) Phys Rev E 52: 1882; (1996) ibid 54: 5493CrossRefGoogle Scholar
  63. 63.
    Grest GS (1997) In: Drake JM, Klafter J, Kopelman R (ed). Dynamics in Small Confined Systems III. Materials Research Society, Pittsburgh, Vol. 464, p 71Google Scholar
  64. 64.
    Grest GS (1997) Current Opinion Colloid Interface Science 2: 271CrossRefGoogle Scholar
  65. 65.
    Lai PY, Binder K (1993) J Chem Phys 98: 2366CrossRefGoogle Scholar
  66. 66.
    Lai PY, Lai CY (1996) Phys Rev E 54: 6958CrossRefGoogle Scholar
  67. 67.
    Miao L, Guo H, Zuckermann MJ (1996) Macromolecules 29: 2289CrossRefGoogle Scholar
  68. 68.
    Doyle PS, Shaqfeh ESG, Gast AP (1997) Phys Rev Lett. 78: 1182; 1998 Macromolecules 31: 5474CrossRefGoogle Scholar
  69. 69.
    Barrat JL (1992) Macromolecules 25: 832CrossRefGoogle Scholar
  70. 70.
    Kumaran V (1993) Macromolecules 26: 2464CrossRefGoogle Scholar
  71. 71.
    Harden JL, Cates M (1996) Phys Rev E 53: 3782CrossRefGoogle Scholar
  72. 72.
    Aubouy M, Harden JL, Cates ME (1996) J Phys II France 6: 969CrossRefGoogle Scholar
  73. 73.
    Rabin Y, Alexander S (1990) Europhys Lett 13: 49CrossRefGoogle Scholar
  74. 74.
    Kröger M, Loose W, Hess S (1993) J Rheol 37: 1057CrossRefGoogle Scholar
  75. 75.
    Williams DRM (1993) Macromolecules 26: 5806CrossRefGoogle Scholar
  76. 76.
    Nguyen D, Clarke CJ, Eisenberg A, Raifailovich MH, Sokolov J, Smith GS (1997) J Appl Cryst 30: 680CrossRefGoogle Scholar
  77. 77.
    Webber RM, Anderson JL, Jhon MD (1990) Macromolecules 23: 1026CrossRefGoogle Scholar
  78. 78.
    Leighton D, Acrivos A (1987) J Fluid Mech 177: 109; (1987) 181: 415CrossRefGoogle Scholar
  79. 79.
    Grest GS (unpublished)Google Scholar
  80. 80.
    Witten TA, Pincus P (1986) Macromolecules 19: 2509CrossRefGoogle Scholar
  81. 81.
    Stuart MAC, Cosgrove T, Vincent B (1986) Adv Colloid Interface Sci 24: 143CrossRefGoogle Scholar
  82. 82.
    Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Nature 370: 634; Klein JCrossRefGoogle Scholar
  83. 82a.
    Kumcheva E, Perahia D, Mahalu D, Warburg S ( 1994) Faraday Discuss 98: 173CrossRefGoogle Scholar
  84. 83.
    Granick S, Demirel AL, Cai LL, Peanasky J (1995) Israel J Chem 35: 75; Cai LL, Peanasky J, Granick S (1996) Trends Polym Sci 4: 47Google Scholar
  85. 84.
    Dhinojwala A, Granick S (1996) Macromolecules 29: 1079CrossRefGoogle Scholar
  86. 85.
    Cai LL ( 1997) Nanorheology of Polymer Brushes, Ph D Thesis, University of IllinoisGoogle Scholar
  87. 86.
    Pelletier E, Belder GF, Hadziioannouu G, Subbotin A (1997) J Phys II France 7: 271CrossRefGoogle Scholar
  88. 87.
    Kilbey II SM, Bates FS, Tirrell M (unpublished)Google Scholar
  89. 88.
    De Gennes PG (1985) C R Acad Sci Paris 300: 839Google Scholar
  90. 89.
    Witten TA, Leibler L, Pincus P (1990) Macromolecules 23: 824CrossRefGoogle Scholar
  91. 90.
    Murat M, Grest GS (1989) Phys Rev Lett 63: 1074CrossRefGoogle Scholar
  92. 91.
    Chakrabarti A, Nelson P, Toral R (1994) J Chem Phys 100: 748CrossRefGoogle Scholar
  93. 92.
    Dickman R, Hong DC (1991) J Chem Phys 95: 4650CrossRefGoogle Scholar
  94. 93.
    Dickman R, Anderson PE (1993) J Chem Phys 99: 3112CrossRefGoogle Scholar
  95. 94.
    Toral R, Chakrabarti A, Dickman R (1994) Phys Rev E 50: 343CrossRefGoogle Scholar
  96. 95.
    Grest GS (1996) Phys Rev Lett 76: 4979CrossRefGoogle Scholar
  97. 96.
    Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon, OxfordGoogle Scholar
  98. 97.
    Israelachvili J ( 1994) Intermolecular & Surface Forces. Academic, LondonGoogle Scholar
  99. 98.
    Patel S, Tirrell M, Hadziioannou G (1988) Colloid Surf. 31: 157CrossRefGoogle Scholar
  100. 99.
    Murat M, Grest GS (1996) Macromolecules 29: 8282CrossRefGoogle Scholar
  101. 100.
    Dhinojwala A, Cai L, Granick S (1996) Langmuir 12: 4537CrossRefGoogle Scholar
  102. 102.
    Martin JI, Wang ZG (1995) J Phys Chem 99: 2833CrossRefGoogle Scholar
  103. 103.
    Milner ST (1988) Europhys Lett 7: 695CrossRefGoogle Scholar
  104. 104.
    van Lent B, Israels R, Scheutjens JMHM, Fleer GJ (1990) J. Colloid Interface Sci 137: 380CrossRefGoogle Scholar
  105. 105.
    Shull KR (1991) J Chem Phys 94: 5723CrossRefGoogle Scholar
  106. 106.
    Hasegawa R, Aoki Y, Doi M (1996) Macromolecules 29; 6656CrossRefGoogle Scholar
  107. 107.
    Granick S (1992) Science 253: 1374CrossRefGoogle Scholar
  108. 108.
    Joanny JF (1992) Langmiur 8: 989CrossRefGoogle Scholar
  109. 109.
    Binder K (1994) AdvPolym Sci 112: 181Google Scholar
  110. 110.
    Chakrabarti A, Nelson P, Toral R (1992) Phys Rev A 46: 4930CrossRefGoogle Scholar
  111. 111.
    Carmesin I, Kremer K (1989) Macromolecules 21: 2819CrossRefGoogle Scholar
  112. 112.
    Shaffer JS (1994) Phys Rev E 50: R683CrossRefGoogle Scholar
  113. 113.
    Weinhold JD, Kumar SK (1994) J Chem Phys 101: 4312CrossRefGoogle Scholar
  114. 114.
    Bird RB, Armstrong RC, Hassager O (1977) Dynamics of Polymeric Liquids. Wiley, New York, Vol. 1Google Scholar
  115. 115.
    Kremer K, Grest GS (1990) J Chem Phys 92: 5057CrossRefGoogle Scholar
  116. 116.
    Neelov IM, Binder K (1995) Macromol Theory Simul 4: 1063CrossRefGoogle Scholar
  117. 117.
    Dünweg B (1993) J Chem Phys 99: 6977CrossRefGoogle Scholar
  118. 118.
    Bacon DJ, Anderson WF (1988) J Molec Graphics 6: 219; Merritt EA, Murphy MEP (1994) Acta Cryst D50: 869CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Gary S. Grest
    • 1
  1. 1.Corporate Research Science LaboratoriesExxon Research & Engineering CompanyAnnandaleUSA

Personalised recommendations