Molecular Transitions and Dynamics at Polymer / Wall Interfaces: Origins of Flow Instabilities and Wall Slip

  • Shi-Qing Wang
Part of the Advances in Polymer Science book series (POLYMER, volume 138)


This article reviews recent results on capillary melt flow anomalies. Long standing controversies and debates in this field are illustrated by summarizing previous results and clarified with an extensive discussion of the most recent results. Explicit molecular mechanisms for flow instabilities are presented in contrast to a background of 40 years’ continuous and far ranging research. New experiments show that the widely observed extrusion anomalies (including oscillating flow, discontinuous flow transition and sharkskin) of linear polyethylenes (LPE) originate from interfacial molecular transitions, which may or may not be stable depending the specific flow conditions. A global flow instability (commonly known as oscillating capillary flow) evidently arises from a time-dependent oscillation of the global hydrodynamic boundary condition (HBC) between no-slip and slip limits at the capillary die wall. Other convincing observations show that sharkskin originates from a local instability of HBC at the die exit wall. The global and local interfacial instabilities both originate from a reversible coil-stretch transition involving interfacial unbound chains that are entangled with the adsorbed chains. In other words, local and global stress oscillations result in the observed macroscopic sharkskin-like and bamboo-like extrudate distortions respectively. A second molecular mechanism for wall slip is also clearly identified, involving stress-induced chain desorption off low surface energy walls. An organic coating of capillary die walls produces massive chain desorption and a large magnitude wall slip at rather low stresses, whereas bare metallic and inorganic surfaces (e.g., steel, aluminum, and glass) usually retain sufficient chain adsorption and prevent catastrophic slip up to the critical stress for the coil-stretch transition. The intricate interfacial flow instabilities exhibited by LPE are also shared by other highly entangled melts such as polybutadienes. In contrast, monodisperse melts with high critical entanglement molecular weight (M e ) such as polystyrene of M w =106 show massive wall slip on low energy surfaces but no measurable interfacial stick-slip transition before reaching the plateau around 0.2 MPa. Tasks for future work include (i) direct molecular probe of melt chain adsorption and desorption processes at a melt/wall interface as a function of the surface condition, (ii) new theoretical studies of chain dynamics in an entangling melt/wall interfacial region as well as in bulk at high stresses, (iii) test of universality of the established physical laws governing melt/wall interfacial behavior and flow for all polymers, and (iv) development of tractable experimental and theoretical methods to study boundary discontinuities and stress singularities.


Polymer interfaces Melt flow instabilities Interfacial wall slip Chain dynamics in fast flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Gennes (1987) Adv Colloid & Interface Sci 27:1892Google Scholar
  2. 2.
    Lee J-J, Fuller GG (1985) J Colloid & Interface Sci 103:569CrossRefGoogle Scholar
  3. 3.
    Frantz P, Granick S (1991) Phys Rev Lett 66: 899; Granick S, Johnson HE (1992) Science 255:966CrossRefGoogle Scholar
  4. 4.
    Balazs A, Gempe MC, Zhou Z (1991) Macromolecules 24:4918CrossRefGoogle Scholar
  5. 5.
    Dijt JC, Cohen Stuart MA, Fleer GJ (1994) Macromolecules 27:3229CrossRefGoogle Scholar
  6. 6.
    Halperin A, Tirrell MV, Lodge TP ( 1992) Adv Polym Sci 100:31CrossRefGoogle Scholar
  7. 7.
    Zheng X, Sauer BB, Vanalsten JG, Scharwz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Phys Rev Lett 74:407; Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Phys Rev Lett 77:2002CrossRefGoogle Scholar
  8. 8.
    Cohen-Addad J-P, Huchot P, Jost P, Pouchelon A ( 1989) Polymer 30:143CrossRefGoogle Scholar
  9. 9. (a)
    Tordella JP (1956) J Appl Phys 27:454CrossRefGoogle Scholar
  10. 9. (b)
    Tordella JP (1963) J Appl Polym Sci 7:215CrossRefGoogle Scholar
  11. 9. (c)
    Tordella JP (1969) In: Rheology, Vol. 5, Eirich FR, Ed, Academic Press: New York, p57Google Scholar
  12. 10. (a)
    Petrie CJS, Denn MM (1976) AIChE J 22:209CrossRefGoogle Scholar
  13. 10. (b)
    Denn MM (1990) Ann Rev Fluid Mech 22:13CrossRefGoogle Scholar
  14. 10. (c)
    Denn MM (1992) In: Moldenaers P, Keunings R (eds) Theoretical and Applied Rheology (Proc XIth Intl Congress on Rheology), Vol. 1, Elsevier, London, pp 45–49. See also Boudreaux E, Cuculo JA (1978) J Macromol Sci C16:39Google Scholar
  15. 11.
    Kalika DS, Denn MM (1987) J Rheol 31:815CrossRefGoogle Scholar
  16. 13.
    Bagley EB, Cabott IM, West DC (1958) J Appl Phys 29:109CrossRefGoogle Scholar
  17. 14.
    Larson RG (1992) Rheol Acta 31:213CrossRefGoogle Scholar
  18. 15.
    Navier M (1823) Mémo Acad Royal Sci Inst France 6:4 14. This reference originates from citation by S. Goldstein in [17] belowGoogle Scholar
  19. 16.
    Stokes GG (1845) Trans Cam Phil Soc 8:299Google Scholar
  20. 17.
    Goldstein S (1938) Modern developments in fluid dynamics, vol 2. Oxford Univ Press, London, pp 676–680Google Scholar
  21. 18.
    Schowalter WR (1988) J Non-Newtonian Fluid Mech 29:25CrossRefGoogle Scholar
  22. 19.
    Burton RH, Folkes MJ, Narh KA, Keller A (1983) J Mater Sci 18:315CrossRefGoogle Scholar
  23. 20.
    Kissi NEL, Piau JM ( 1990) J Non-Newtonian Fluid Mech 37:55CrossRefGoogle Scholar
  24. 21.
    Larson RG, Patel S Chen Y (1994) Rheol Acta 33:243CrossRefGoogle Scholar
  25. 22.
    Kissi NEL, Léger L, Piau JM, Mezghani, A ( 1994) J Non-Newtonian Fluid Mech 52:249CrossRefGoogle Scholar
  26. 23.
    Tritton DJ (1977) Physical Fluid Dynamics. Van Nostrand Reinhold, UK, p 54Google Scholar
  27. 24.
    (a)_Lamb H ( 1932) Hydrodynamics, pp 576 and 586, 6th edn. Dover, New York; 24. (b)_Basset AB (1888) A treatise on hydrodynamics. Deighton, Bell and Co., CambridgeGoogle Scholar
  28. 25.
    De Gennes PG (1979) C R Acad Sci 288B:219Google Scholar
  29. 27.
    Wang SQ, Drda PA (1996) Macromolecules 29:4115CrossRefGoogle Scholar
  30. 28.
    Wang SQ, Drda PA (1997) Rheol Acta 36:128Google Scholar
  31. 29.
    Wang SQ, Drda PA (1996) Macromolecules 29:2627CrossRefGoogle Scholar
  32. 30.
    Brochard F, De Gennes PG (1992) Langmuir 8:3033CrossRefGoogle Scholar
  33. 31.
    Bergem N ( 1976) Proc 7th Intl Congr Rheol, Swedish Soc Rheol, p 50Google Scholar
  34. 32.
    Blyler LL, Hart AC (1970) Polym Sci Eng 10:193CrossRefGoogle Scholar
  35. 33.
    Henson DJ, Mackay ME (1995) J Rheol 39:359CrossRefGoogle Scholar
  36. 34.
    Cogswell FN (1977) J Non-Newtonian Fluid Mech 2:37CrossRefGoogle Scholar
  37. 35.
    Lipscomb GG, Keunings R, Denn MM J Non-Netwonian Fluid Mech (1987) 24:85Google Scholar
  38. 36. (a)
    Huh C, Scriven LE (1971) J Colloid & Interface Sci 35:85CrossRefGoogle Scholar
  39. 36. (b)
    Silliman WJ, Scriven LE (1978) Phys Fluids 21:2115CrossRefGoogle Scholar
  40. 36. (c)
    Silliman WJ, Scriven LE (1980) J Comput Phys34:287CrossRefGoogle Scholar
  41. 36. (d)
    Kistler SF, Scriven LE (1983) Peason JRA, Richardson SM (eds) Computational analysis of polymer processing. Appl Sci Publisher, London, p243Google Scholar
  42. 37.
    Hatzikiriakos SG, Dealy JM (1991) J Rheol 35:497CrossRefGoogle Scholar
  43. 38.
    Migler KB, Hervet H, Leger L (1993) Phys Rev Lett 70:287; MiglerKB, Massey G, Hervet H, Leger L (1994) J Phys-Conden Matt 6:A301CrossRefGoogle Scholar
  44. 39.
    Laun HM (1982) Rheol Acta 21:464CrossRefGoogle Scholar
  45. 40.
    Macosko CW, Morse DJ (1976) Kalson C, Kubat J (eds) Proceedings of Seventh International Congress on Rheology, Gothenburg, p376Google Scholar
  46. 41.
    Adrian DW, Giacomin AJ (1992) J Rheol 36:1227; Adrian DW, Giacomin AJ (1994) J. Eng Mater Tech 116:446CrossRefGoogle Scholar
  47. 42.
    Inn YW, Wang SQ (1994) Rheol Acta 33:108 The observed stress decay at high stresses and slow recovery at lower stresses in PDMS suspensions of glass spheres was thought to arise from interfacial slip and to be controlled by “glassy” chain dynamics. This interpretation turned out to be completely wrong. See ref. [47].CrossRefGoogle Scholar
  48. 43.
    Hatzikiriakos SG, Kalogerakis N ( 1994) Rheol Acta 33:38CrossRefGoogle Scholar
  49. 44. (a)
    Graham MD (1995) J Rheol 39:697CrossRefGoogle Scholar
  50. 44. (b)
    Black WB, Graham MD (1996) Phys Rev Lett 77:956CrossRefGoogle Scholar
  51. 45.
    Shore JD, Ronis D, Piche L, Grant M (1996) Phys Rev Lett 77:655CrossRefGoogle Scholar
  52. 46.
    Petit L, Noetinger B (1988) Rheol Acta 27:437CrossRefGoogle Scholar
  53. 47.
    Wang SQ, Inn YW (1995) Polym Intl 37:153CrossRefGoogle Scholar
  54. 48.
    Inn YW, Wang SQ (1996) Phys Rev Lett 76:467CrossRefGoogle Scholar
  55. 49.
    Kraynik AM, Schowalter WR (1981) J Rheol 25:95CrossRefGoogle Scholar
  56. 50.
    Atwood BT, Schowalter WR (1989) Rheol Acta 28:134CrossRefGoogle Scholar
  57. 51.
    Lim FJ, Schowalter WR (1989) J Rheol 33:1359CrossRefGoogle Scholar
  58. 52.
    Piau JM, Kissi NEl, Tremblay B (1990) J Non-Newtonian Fluid Mech 34:145CrossRefGoogle Scholar
  59. 53.
    Hill DA, Hasegawa T, Denn M (1990) J Rheol 34:891CrossRefGoogle Scholar
  60. 54.
    Hatzikiriakos SG, Dealy JM (1992) J Rheol 36:703CrossRefGoogle Scholar
  61. 55.
    Hatzikiriakos SG, Dealy JM (1992) J Rheol 36:845CrossRefGoogle Scholar
  62. 56.
    Piau JM, Kissi NEl, Tremblay B (1994) J Non-Newtonian Fluid Mech 54:121CrossRefGoogle Scholar
  63. 57.
    Wang SQ, Drda P (1997) Macromol Chem & Phys 198:673CrossRefGoogle Scholar
  64. 58.
    Ui J, Ishimari Y, Morakami H, Fukushma N, Mori Y ( 1964) SPE Soc Plastics Engr Trans 4:295Google Scholar
  65. 59.
    Uhland E (1979) Rheol Acta 18:1CrossRefGoogle Scholar
  66. 60.
    Sabia R (1962) J Appl Polym Sci 6:S42CrossRefGoogle Scholar
  67. 61. (a)
    Vinogradov GV (1972) J Polym Sci Part A-2 10:1061CrossRefGoogle Scholar
  68. 61. (b)
    Vinogradov GV, Malkin AY (1980) Rheology of polymers-viscoelasticity and flow of polymers. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. 61. (c)
    Vinogradov GV, Protasov VP, Dreval VE (1984) Rheol Acta 23:46CrossRefGoogle Scholar
  70. 62.
    Yang XP, Wang SQ (1998) Rheol Acta, in press.Google Scholar
  71. 63.
    Lupton JM, Regester JW (1965) Polym Sci Eng 5:235CrossRefGoogle Scholar
  72. 64.
    Pearson JRA (1985) Mechanics of polymer processing. Elsevier, LondonGoogle Scholar
  73. 65.
    Lin YH (1985) J Rheol 29:506Google Scholar
  74. 66.
    Huseby TW (1966) Trans Soc Rheol 10:181 Similar theoretical studies have been made more recently by Malkus and coworkersCrossRefGoogle Scholar
  75. 67. (a)
    McLeish TCB, Ball RC (1986) J Polym Sci B24:1735CrossRefGoogle Scholar
  76. 67. (b)
    McLeish, TCB (1986) J Polymc Sci B25:2253CrossRefGoogle Scholar
  77. 68.
    Metzger AP, Hamilton CW (1964) SPE Trans 4:107. The authors did not observe a flow instability in a Teflon capillary. However, they were not so sure whether the Teflon capillary retained its original shape and dimensions at 190° C and high stresses. Consequently a glass-reinforced Teflon capillary die was employed and found to restore the flow instability (i.e., oscillation), thus casting “doubt on the assumed slip mechanism.” It is clear to us today that the glass fillers exposed on the die wall may provide sufficient adsorption sites for polyethylene chains, thus restoring the source of the flow oscillation. To our knowledge, this is one of the few early in the scientific literature that studied the surface effect on melt flow instabilities although its conclusion might be misleadingCrossRefGoogle Scholar
  78. 69.
    Wang SQ, Drda PA, Inn YW (1996) J Rheol 40:875; Barone JR, Plucktaveesak N, Wang SQ (1998) J Rheol 42:813.CrossRefGoogle Scholar
  79. 70.
    Kolnaar, JWH, Keller A (1994) Polymer 35:3863; Kolnaar, JWH, Keller A (1995) Polymer 36:821; Kolnaar, JWH, Keller A (1997) Polymer 38:1817CrossRefGoogle Scholar
  80. 71.
    Mooney M (1931) Trans Soc Rheol 2:210. It was evident even at the time of Navier that the meaningful way to quantify any level of wall slip is to express it in terms of the extrapolation length b [24]. Equation (4a) clearly shows that any correction would enter as the ratio of b to a characteristic dimension of the flow apparatus, e.g., the diameter D of capillary dies. It is unfortunate that Mooney abandoned the notion of the extra polation length b in favor of the slip velocity vs CrossRefGoogle Scholar
  81. 72.
    Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Macromolecules 27:4639CrossRefGoogle Scholar
  82. 73.
    De Gennes PG (1996) Private Communication; Brochard-Wyart F, de Gennes PG (1993) C.R. Acad. Sci. Paris t. 317 Série II:13; Ajdari A (1993) C.R. Acad. Sci. Paris t. 317 Série II:1159Google Scholar
  83. 74.
    Drda P and Wang SQ (1995) Phys Rev Lett 75:2698CrossRefGoogle Scholar
  84. 75.
    White J (1973) United State-Japan Seminar on Polymer Processing and Rheology. Bogue DC, Yamamoto M, White JL (eds) Wiley, New York, p155Google Scholar
  85. 76.
    Tordella J (1957) Trans Soc Rheol 1:203CrossRefGoogle Scholar
  86. 77.
    Bagley EB, Birks AM (1960) J Appl Polym Sci 31:556Google Scholar
  87. 78.
    Ramamurthy AV (1986) J Rheol 30:337CrossRefGoogle Scholar
  88. 79.
    Beaufils P, Vergnes B, Agassant JF (1989) Interntl Polym Processing IV:78Google Scholar
  89. 80. (a)
    Kurtz SJ (1984) Advances in Rheology (Proc IX Intl Congr Rheol) Mena B, Garcia-Rejon A, Rangel Nafaile C (eds) vol 3,p 339Google Scholar
  90. 80. (b)
    Kurtz SJ (1991) 7th Annual Meeting of Polym Proc Soc, Hamilton, Canada, p 54Google Scholar
  91. 80. (c)
    Kurtz SJ (1992) Theoretical and Applied Rheology (Proc XIth Intl Congr Rheol), vol 1, Moldenaers P, Keunings R (eds), Elsevier, London, p377Google Scholar
  92. 81.
    Moynihan RH, Baird DG, Ramanathan R (1990) J Non-Newtonian Fluid Mech 36:255CrossRefGoogle Scholar
  93. 82.
    Sornberger G, Quantin JC, Fajolle R, Vergens B, Agassant JF ( 1987) J Non-Newtonian Fluid Mech 23:123CrossRefGoogle Scholar
  94. 83.
    Tanner RI (1985) Engineering Rheology, Clarendon, OxfordGoogle Scholar
  95. 84.
    Pearson JRA, Petrie CJS (1968) Whorlow RW (ed) Polymer systems: deformation and flow. Macmillan, New York, p163Google Scholar
  96. 85.
    Bagley EB, Schreiber HP (1961) Trans Soc Rheol 5:341CrossRefGoogle Scholar
  97. 86.
    Meijer HEH (1997) Private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Shi-Qing Wang
    • 1
  1. 1.Departments of Macromolecular Science and PhysicsCase Western Reserve UniversityCleveland

Personalised recommendations