Advertisement

The singularity expansion method

  • C. E. Baum
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 10)

Keywords

Entire Function Coupling Coefficient Natural Mode Complex Frequency Pole Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.1
    C. E. Baum: “Interaction of Electromagnetic Fields with an Object which Has an Electromagnetic Symmetry Plane”, Interaction Note 63, March 1971Google Scholar
  2. 3.2
    C. E. Baum: “On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems”, Interaction Note 88, Dec. 1971Google Scholar
  3. 3.3
    L. Marin, R. W. Latham: “Analytical Properties of the Field Scattered by a Perfectly Conducting, Finite Body”, Interaction Note 92, Jan. 1972; alsoGoogle Scholar
  4. 3.3 a
    L. Marin, R. W. Latham: Proc. IEEE 60, 640 (1972)CrossRefGoogle Scholar
  5. 3.3 b
    L. Marin: IEEE Trans. Ap-2l, 809 (1973)ADSCrossRefGoogle Scholar
  6. 3.4
    L. Marin: “Natural-Mode Representation of Transient Scattering from Rotationally Symmetric, Perfectly Conducting Bodies and Numerical Results for a Prolate Spheroid”, Interaction Note 119, Sept.1972; alsoGoogle Scholar
  7. 3.4 a
    L. Marin: IEEE Trans. AP-22, 266 (1974)ADSCrossRefGoogle Scholar
  8. 3.5
    F. M. Tesche: “On the Singularity Expansion Method as Applied to Electromagnetic Scattering from Thin Wires”, Interaction Note 102, April 1972; alsoGoogle Scholar
  9. 3.5 a
    F. M. Tesche: IEEE Trans. AP-21, 53 (1973)ADSCrossRefGoogle Scholar
  10. 3.6
    J.P. Martinez, Z. L. Pine, F. M. Tesche: “Numerical Results of the Singularity Expansion Method as Applied to a Plane Wave Incident on a Perfectly Conducting Sphere”, Interaction Note 112, May 1972Google Scholar
  11. 3.7
    L. Marin: “Application of the Singularity Expansion Method to Scattering from Imperfectly Conducting Bodies and Perfectly Conducting Bodies Within a Parallel Plate Region”, Interaction Note 116, June 1972Google Scholar
  12. 3.8
    S. W. Lee, B. Leung: “The Natural Resonance Frequency of a Thin Cylinder and Its Application to EMP Studies”, Interaction Note 96, Feb. 1972Google Scholar
  13. 3.9
    C. E. Baum: “On the Singularity Expansion Method for the Case of First Order Poles”, Interaction Note 129, Oct. 1972Google Scholar
  14. 3.10
    C. D. Taylor, T. T. Crow, K. T. Chen: “On the Singularity Expansion Method Applied to Aperture Penetration: Part 1, Theory”, Interaction Note 134, May 1973Google Scholar
  15. 3.11
    P. R. Barnes: “On the Singularity Expansion Method as Applied to the EMP Analysis and Simulation of the Cylindrical Dipole Antenna”, Interaction Note 146, Nov. 1973Google Scholar
  16. 3.12
    F. M. Tesche: “Numerical Considerations for the Calculation of Currents Induced on Intersecting Wires Using the Pocklington Integro-Differential Equation”, Interaction Note 150. Jan. 1974Google Scholar
  17. 3.13
    D. R. Wilton, K. R. Umashankar: “Parametric Study of an L-Shaped Wire Using the Singularity Expansion Method”, Interaction Note 152, Nov. 1973Google Scholar
  18. 3.14
    P. R. Barnes, D. B. Nelson: “Transient Response of Low Frequency Vertical Antennas to High Altitude Nuclear Electromagnetic Pulse (EMP)”, Interaction Note 160, March 1974Google Scholar
  19. 3.15
    T. T. Crow, B. D. Graves, C. D. Taylor: “The Singularity Expansion Method as Applied to Perpendicular Crossed Cylinders in Free Space”, Interaction Note 161, Oct. 1973Google Scholar
  20. 3.16
    K. R. Umashankar, D. R. Wilton: “Analysis of an L-Shaped Wire Over a Conducting Ground Plane Using the Singularity Expansion Method”, Interaction Note 174, March 1974Google Scholar
  21. 3.17
    R. J. Garbacz: “A Generalized Expansion for Radiated and Scattered Fields”, Interaction Note 180, 1968 (PhD dissertation, Ohio State University)Google Scholar
  22. 3.18
    R. H. Turpin: “Basis Transformation, Least Square, and Characteristic Mode Techniques for Thin-Wire Scattering Analysis”, Interaction Note 181, 1970 (PhD dissertation, Ohio State University); alsoGoogle Scholar
  23. 3.18 a
    R. J. Garbacz, R. H. Turpin: IEEE Trans. AP-19, 348 (1971)ADSCrossRefGoogle Scholar
  24. 3.19
    L. Marin: “Natural Modes of Certain Thin-Wire Structures”, Interaction Note 186, Aug. 1974Google Scholar
  25. 3.20
    R. F. Harrington, J. R. Mautz: “Theory and Computation of Characteristic Modes for Conducting Bodies”, Interaction Note 195, Dec. 1970; alsoGoogle Scholar
  26. 3.20a
    R. F. Harrington, J. R. Mautz: IEEE Trans. AP-19, 622, 629 (1971)ADSCrossRefGoogle Scholar
  27. 3.21
    C. E. Baum: “On the Eigenmode Expansion Method for Electromagnetic Scattering and Antenna Problems, Part I: Some Basic Relations for Eigenmode Expansions and Their Relation to the Singularity Expansion”, Interaction Note 229, January 1975Google Scholar
  28. 3.22
    R. H. Shafer, R. G. Kouyoumjian: “Transient Currents on a Cylinder Illuminated by an Impulsive Plane Wave”, Interaction Note to be published and IEE Trans. AP to appearGoogle Scholar
  29. 3.23
    L. Marin: “Transient Electromagnetic Properties of Two Parallel Wires”, Sensor and Simulation Note 173, March 1973Google Scholar
  30. 3.24
    L. Marin: “Natural Modes of Two Collinear Cylinders”, Sensor and Simulation Note 176, May 1973Google Scholar
  31. 3.25
    F. M. Tesche: “Application of the Singularity Expansion Method to the Analysis of Impedance Loaded Linear Antennas”, Sensor and Simulation Note 177, May 1973Google Scholar
  32. 3.26
    C. E. Baum: “Singularity Expansion of Electromagnetic Fields and Potentials Radiated from Antennas or Scattered from Objects in Free Space”, Sensor and Simulation Note 179, May 1973Google Scholar
  33. 3.27
    T. H. Shumpert: “EMP Interaction with a Thin Cylinder above a Ground Plane Using the Singularity Expansion Method”, Sensor and Simulation Note 182, June 1973Google Scholar
  34. 3.28
    K. S. H. Lee, L. Marin: “SGEMP for Resonant Structures”, Theoretical Note 199, Sept. 1974Google Scholar
  35. 3.29
    T. T. Crow, B. D. Graves, C. D. Taylor: “Numerical Techniques Useful in the Singularity Expansion Method as Applied to Electromagnetic Interaction Problems”, Mathematics Note 27, Dec. 1972Google Scholar
  36. 3.30
    C. E. Baum: “Electromagnetic Reciprocity and Energy Theorems for Free Space Including Sources Generalized to Numerous Theorems, to Combined Fields, and to Complex Frequency Domain”, Mathematics Note 33, Dec. 1973Google Scholar
  37. 3.31
    C. E. Baum: “On the Use of Contour Integration for Finding Poles, Zeros, Saddles, and Other Function Values in the Singularity Expansion Method”, Mathematics Note 35, Feb. 1974Google Scholar
  38. 3.32
    D. R. Wilton, R. J. Pogorzelski, R. D. Nevels: “Singularity Trajectories Under Parameter Variation”, Mathematics Note (to be published)Google Scholar
  39. 3.33
    J. Schwinger: “The Theory of Obstacles in Resonant Cavities and Waveguides”, MIT Radiation Laboratory report (May 1943)Google Scholar
  40. 3.34
    H. C. Pocklington: Proc. Cambridge Phil. Soc. 9, 324 (1897)Google Scholar
  41. 3.35
    M. Abraham: Ann. Phys. (Leipzig) 66, 435 (1898)ADSCrossRefGoogle Scholar
  42. 3.36
    Lord Rayleigh: Proc. Roy. Soc. 87, 193 (1912)ADSCrossRefGoogle Scholar
  43. 3.37
    C. W. Oseen: Phys. Z. 14, 1222 (1913)Google Scholar
  44. 3.37 a
    C. W. Oseen: Arkiv Mat. Astr. Fysik 9, no. 28,1 (1914)Google Scholar
  45. 3.38 b
    C. W. Oseen: Arkiv Mat. Astr. Fysik 9, no. 29,1 (1914)Google Scholar
  46. 3.38 c
    C. W. Oseen: Arkiv Mat. Astr. Fysik 9, no. 30,1 (1914)Google Scholar
  47. 3.38
    E. Hallén: “Über die elektrischen Schwingungen in drahtförmigen Leitern”, Uppsala Univ. Årsskrift, no. 1, pp. 1–102, 1930Google Scholar
  48. 3.38 a
    E. Hallén: Nova Acta Reg. Soc. Sci. Upsaliensis 11, 1 (1938)Google Scholar
  49. 3.39
    L. Page, N. Adams: Phys. Rev. 53, 819 (1938)ADSCrossRefGoogle Scholar
  50. 3.39 a
    L. Page: Phys. Rev. 65, 98, 111 (1944)ADSMathSciNetCrossRefGoogle Scholar
  51. 3.40
    E. T. Copson: Theory of Functions of a Complex Variable (Oxford Press, Oxford 1935)zbMATHGoogle Scholar
  52. 3.41
    J. A. Stratton: Electromagnetic Theory (McGraw Hill, New York 1941)zbMATHGoogle Scholar
  53. 3.42
    S. A. Schelkunoff, H. T. Frits: Antennas Theory and Practice, (Wiley, New York 1952)zbMATHGoogle Scholar
  54. 3.43
    R. V. Churchill: Complex Variables and Applications (McGraw Hill, New York 1960)zbMATHGoogle Scholar
  55. 3.44
    J. Van Bladel: Electromagnetic Fields (McGraw Hill, New York 1964)Google Scholar
  56. 3.45
    P. Roman: Advanced Quantum Theory (Addison-Wesley, New York 1965)zbMATHGoogle Scholar
  57. 3.46
    G. Carrier, M. Krook, C. Pearson: Functions or a Complex Variable (McGraw Hill, New York 1966)zbMATHGoogle Scholar
  58. 3.47
    R. F. Harrington: Field Computation by Moment Methods (Macmillan, 1968); also for recent treatmentsGoogle Scholar
  59. 3.47 a
    R. Mittra (ed.): Topics in Applied Physics, Vol. 3: Numerical and Asymptotic Techniques in Electromagnetics (Springer, Berlin, Heidelberg, New York 1975)Google Scholar
  60. 3.48
    L. A. Weinstein: Open Resonators and Open Waveguides (Golem Press, Boulder, Colo. 1969)Google Scholar
  61. 3.49
    C. T. Tai: Dyadic Green's Functions in Electromagnetic Theory (Intext Educational Publishers, 1971)Google Scholar
  62. 3.50
    L. B. Felsen, N. Marcuvitz: Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, N. J. 1973)zbMATHGoogle Scholar
  63. 3.51
    F. M. Tesche: Private communication.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • C. E. Baum

There are no affiliations available

Personalised recommendations