Advertisement

Dissolved oxygen electrodes

  • Young H. Lee
  • George T. Tsao
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 13)

Abstract

Recent advances in theory, construction, operation, and application of dissolved oxygen (DO) electrodes are reviewed to assist those who use or intend to use them in such areas as biochemical engineering, microbiology, and environmental engineering. Basic operating principles of membrane-covered DO electrodes and oxygen microelectrodes are presented together with methods of construction, electrode component selection, and general design considerations. Methods of calibration and effects of temperature and liquid film on electrode performance are also discussed. Sources of measurement errors due to probe characteristics and the reaction in the liquid are discussed to illustrate some of the limitations of DO electrodes. The spacial resolution of oxygen microelectrodes in local concentration measurements is also discussed. Finally, the application of DO electrodes in measuring aeration capacity and oxygen solubility is reviewed.

Keywords

Dissolve Oxygen Oxygen Partial Pressure Oxygen Tension Liquid Film Current Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

gas-liquid interfacial area

A

surface area of cathode

A1, A2

quantities defined in Eq. (47)

B

quantity defined in Eq. (61)

B1, B2

thermistor constants defined in Eq. (48)

c

concentration of dissolved oxygen

Cg

inlet gaseous oxygen concentration

C′g

oxygen concentration in dispersed gas phase

c0

bulk concentration

c1

initial concentration

c*

equilibrium concentration

de

thickness of electrolyte layer

dL

thickness of liquid film

dm

thickness of membrane

\(\mathop {d_t }\limits^ -\)

equivalent thickness defined by Eq. (20)

\(\mathop d\limits^ -\)

equivalent thickness defined by Eq. (18)

d′

equivalent thickness defined by Eq. (5 3)

De

oxygen diffusivity of electrolyte layer

DL

oxygen diffusivity of liquid film

Dm

oxygen diffusivity of membrane

Dm*

oxygen diffusivity of membrane at base temperature

D0

oxygen diffusivity of medium

D1, D2

oxygen diffusivities

E

activation energy for oxygen permeation

ED

activation energy for oxygen diffusion

F

Faraday's constant (96,500 coulombs/g-equivalent)

G

gas flow rate

H

Henry's Law constant

H

heat of solution

I

oxygen current

IG

probe current in gas phase

IL

probe current in liquid phase

Is

steady-state current

It

transient current

IT

oxygen current as function of temperature

J

oxygen flux

k

probe constant defined by Eqs. (11) or (19)

ke

mass transfer coefficient of electrolyte layer

kL

liquid phase mass transfer coefficient

kLM

mass transfer coefficient of liquid film around membrane

KM

Michaelis-Menten constant

km

mass transfer coefficient of membrane

k0

zeroth order reaction constant

K0

overall mass transfer coefficient

L

quantity defined by Eq. (55)

N

number of electrons per mole of oxygen reduced

p

oxygen partial pressure

pe

oxygen partial pressure at electrolyte/membrane interface

pm

oxygen partial pressure at membrane/liquid interface

p′m

xygen partial pressure defined by Eq. (57)

p0

oxygen partial pressure of bulk medium

Pe

oxygen permeability of electrolyte layer

PL

oxygen permeability of liquid film

Pm

oxygen permeability of membrane

r

distance from center of cathode

r0

radius of cathode

R

gas law constant or reaction rate

RL

oad resistance

RT

resistance of thermistor

s

quantity defined by Eq. (29)

Sm

oxygen solubility of membrane

Sm*

oxygen solubility of membrane at base temperature

S0

oxygen solubility of medium

Sw

oxygen solubility of water

t

time

T

absolute temperature

v

liquid velocity

vc

critical liquid velocity

V

voltage drop

Vg

volume of gas absorbed

VG

volume of dispersed gas phase

VL

volume of liquid

Vs

volume of absorbing solvent

VT

voltage drop across thermistor

x

distance from the surface of cathode

a

Bunsen coefficient defined by Eq. (36)

μ1, μ2

liquid viscosities

Γ95%

95% response time

Γ

normalized probe response defined by Eq. (39)

11 References

  1. 1.
    Adams, A.P., Morgan-Hughes, J.O., Sykes, M.K.: Anesthesiology 22, 575 (1967)Google Scholar
  2. 2.
    Aiba, S., Ohashi, M., Huang, S.Y.: Ind. Eng. Chem. Fundam. 7, 497 (1968)Google Scholar
  3. 3.
    Aiba, S., Huang, S.Y.: J. Ferment. Technol. 47, 372 (1969)Google Scholar
  4. 4.
    Aiba, S., Huang, S.Y.: Chem. Eng. Sci. 24, 1149 (1969)Google Scholar
  5. 5.
    Aiba, S., Humphrey, A.E., Mills, N.: Biochemical Engineering, 2nd ed. New York: Academic Press 1973Google Scholar
  6. 6.
    Albanese, R.A.: J. Theor. Biol. 33, 91 (1971)Google Scholar
  7. 7.
    ASTM D1589-60, Annual Book of ASTM Standards, Part 31, p. 438 (1978)Google Scholar
  8. 8.
    Bandyopadhay, B., Humphrey, A.E.: Biotechnol. Bioeng. 9, 533 (1967)Google Scholar
  9. 9.
    Barr, R.E., Tang, T.E., Hahn, A.W.: Adv. Exp. Med. Biol. 94, 17 (1978)Google Scholar
  10. 10.
    Battino, R., Clever, H.L.: Chemical Reviews 66, 395 (1966)Google Scholar
  11. 11.
    Baumgärtl, H., Lübbers, D.W.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 130. London: University Park Press 1973Google Scholar
  12. 12.
    Baumgärtl, H., Grünewald, W., Lübbers, D.W.: Pflügers Arch. 347, 49 (1974)Google Scholar
  13. 13.
    Beckman Technical Bulletine, Fieldlab Oxygen Analyzer, Beckman Instr. 1974Google Scholar
  14. 14.
    Beechey, R.B., Ribbons, D.W.: Methods in Microbiology, Vol. 6B, p. 25 (1972)Google Scholar
  15. 15.
    Benedeck, A.A., Heideger, W.J.: Water Res. 4 (9), 627 (1970)Google Scholar
  16. 16.
    Berkenbosch, A., Riedstra, J.W.: Acta Physiol. Pharmacol. Neerl. 12, 144 (1963)Google Scholar
  17. 17.
    Berkenbosch, A.: Acta Physiol. Pharmacol. Neerl. 14, 300 (1967)Google Scholar
  18. 18.
    Bicher, H.I., Knisely, M.H.: J. Appl. Physiol. 28, 387 (1970)Google Scholar
  19. 19.
    Biomarine Industries, Tech. Bulletin: OM322-675, Malvern, Pennsylvania (1975)Google Scholar
  20. 20.
    Bird, B.D., Williams, J., Whitman, J.G.: Brit. J. Anaesth. 46, 249 (1974)Google Scholar
  21. 21.
    Borkowski, J.D., Johnson, M.J.: Biotechnol. Bioeng. 9, 635 (1967)Google Scholar
  22. 22.
    Bourdaud, D., Lane, A.G.: Biotechnol. Bioeng. 16, 279 (1974)Google Scholar
  23. 23.
    Briggs, R., Viney, M.: J. Sci. Instr. 41, 78 (1964)Google Scholar
  24. 24.
    Brookman, J.S.G.: Biotechnol. Bioeng. 11, 323 (1969)Google Scholar
  25. 25.
    Brown, D.E.: In: Methods in microbiology. Norris, J.R., Ribbons, D.W. (eds.), Vol. 2, p. 125, 1970Google Scholar
  26. 26.
    Bühler, H., Ingold, W.: Process Biochem., p. 19, April (1976)Google Scholar
  27. 27.
    Bungay III., H.R., Huang, M.Y., Sanders, W.M.: Amer. Inst. Chem. Eng. J. 19, 373 (1973)Google Scholar
  28. 28.
    Bungay III, H.R., Whalen, W.J., Sanders, W.M.: Biotechnol. Bioeng. 11, 765 (1969)Google Scholar
  29. 29.
    Carey, F.G., Teal, J.M.: J. Appl. Physiol. 20, 1074 (1965)Google Scholar
  30. 30.
    Carrit, D.E., Kanwisher, J.W.: Anal. Chem. 31, 5 (1959)Google Scholar
  31. 31.
    Clark, L.C.: Trans. Am. Soc. Artif. Organs. 2, 41 (1956)Google Scholar
  32. 32.
    Clark, L.C.: Biotech. Bioeng. Symp. 3, 377 (1972)Google Scholar
  33. 33.
    Clark, L.C., Clark, E.W.: Adv. Exp. Med. Bio. 37A, 127 (1973)Google Scholar
  34. 34.
    Cobbold, R.S.C.: Transducers for biomedical measurements. New York: John Wiley and Sons 1974Google Scholar
  35. 35.
    Danckwerts, P.V.: Gas-liquid reactions, p. 18. New York: McGraw Hill 1970Google Scholar
  36. 36.
    Dang, N.D.P., Karrer, D.A., Dunn, I.J.: Biotechnol. Bioeng. 19, 853 (1977)Google Scholar
  37. 37.
    Davies, P.W.: In: Physical techniques in biological research 4, 137 (1961)Google Scholar
  38. 38.
    Davies, P.W., Brink, F., Jr.: Rev. Sci. Instr. 13, 524 (1942)Google Scholar
  39. 39.
    Döhring, W., Diefenthaler, K., Barnikol, W.K.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 86. London: University Park Press 1973Google Scholar
  40. 40.
    Dunn, I.J., Einsele, A.: J. Appl. Chem. Biotechnol. 25, 707 (1975)Google Scholar
  41. 41.
    Eberhard, P., Mindt, W., Jann, F., Hammacher, K.: Med. Biol. Eng. 13, 436 (1975)Google Scholar
  42. 42.
    Elsworth, R.: Brit. Chem. Eng., p. 63, Feb. (1972)Google Scholar
  43. 43.
    Evangelista, R., Gorin, N.H., Hamilton, W.J.: Power 121, 83 (1977)Google Scholar
  44. 44.
    Evans, D.H., Lingane, J.J.: Electroanal. Chem. 6, 283 (1963)Google Scholar
  45. 45.
    Fatt, I.: J. Appl. Physiol. 19, 326 (1964)Google Scholar
  46. 46.
    Fatt, I.: Anal. N. Y. Acad. Sci. 148, 81 (1968)Google Scholar
  47. 47.
    Fatt, I.: Polarographic oxygen sensors. Ohio: CRC Press 1976Google Scholar
  48. 48.
    Fatt, I., St. Helen, R.: J. Appl. Physiol. 27, 435 (1969)Google Scholar
  49. 49.
    Flynn, D.S., Kilburn, D.G., Lilly, M.D., Webb, F.C.: Biotechnol. Bioeng. 9, 623 (1967)Google Scholar
  50. 50.
    Forbes, M., Lynn, S.: Amer. Inst. Chem. Eng. J. 21, 763 (1975)Google Scholar
  51. 51.
    Friesen, W.O., McIlory, M.B.: J. Appl. Physiol. 29, 258 (1970)Google Scholar
  52. 52.
    Gal-Or, B., Hauk, J.P., Hoelscher, H.E.: Int. J. Heat. Mass Transfer 10 1559 (1967)Google Scholar
  53. 53.
    Gelder, R.L., Neville, J.F.: Amer. J. Clin. Path. 55, 325 (1971)Google Scholar
  54. 54.
    Gobe, J.H., Phillips, T.: Biotechnol. Bioeng. 6, 491 (1964)Google Scholar
  55. 55.
    Goldstick, T.K., Fatt, I.: Chem. Eng. Prog. Symp. Ser. 66, 101 (1970)Google Scholar
  56. 56.
    Grünewald, W.: Pflügers Arch. 320, 24 (1970)Google Scholar
  57. 57.
    Grünewald, W.: Pflügers Arch. 322, 109 (1971)Google Scholar
  58. 58.
    Grünewald, W.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lubbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 160. London: University Park Press 1973Google Scholar
  59. 59.
    Harrison, D.E.F., Melbourne, K.V.: Biotechnol. Bioeng. 12, 633 (1970)Google Scholar
  60. 60.
    Harrison, D.E.F.: J. Appl. Chem. Biotech. 22, 417 (1972)Google Scholar
  61. 61.
    Harrison, D.E.F.: In: Measurement of oxygen. Degn, H., Balslev, I., Brook, R. (eds.). New York: Elsevier Scientific Publishing Co. 1976Google Scholar
  62. 62.
    Heineken, F.G.: Biotechnol. Bioeng. 12, 145 (1970)Google Scholar
  63. 63.
    Heineken, F.G.: Biotechnol. Bioeng. 8, 599 (1971)Google Scholar
  64. 64.
    Hitchman, M.L.: Measurement of dissolved oxygen. New York: John Wiley and Sons 1978Google Scholar
  65. 65.
    Hospodka, J., Caslavsky, Z.: Folia Microbiol. (Prague) 10, 186 (1965)Google Scholar
  66. 66.
    Huang, M.Y., Bungay III., H.R.: Biotechnol. Bioeng. 15, 1193 (1973)Google Scholar
  67. 67.
    Hulands, G.H., Nunn, J.F., Paterson, G.M.: Brit. J. Anaesth. 42, 9 (1970)Google Scholar
  68. 68.
    Hwang, S.T., Choi, C.K., Kammermeyer, K.: Sep. Sci. 9, 461 (1974)Google Scholar
  69. 69.
    Jensen, O.J., Jacobsen, T., Thomsen, K.: J. Electroanal. Chem. 87, 203 (1978)Google Scholar
  70. 70.
    Jeter, H.W., Foyn, E., King, M., Gordon, L.I.: Limnol. Oceanog. 17, 288 (1972)Google Scholar
  71. 71.
    Johnson, M.J., Borkowski, J., Engblom, C: Biotech. Bioeng. 6, 457 (1964)Google Scholar
  72. 72.
    Jones, C, Pust, H., Lauer, J.: Analysis Instrumentation 14, 51 (1976)Google Scholar
  73. 73.
    Kessler, M.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 81. London: University Park Press 1973Google Scholar
  74. 74.
    Key, A., Parker, D., Davies, R.: Phys. Med. Biol. 15, 569 (1970)Google Scholar
  75. 75.
    Kimmich, H.P., Kreuzer, F.K.: Prog. Resp. Res. 3, 100 (1969)Google Scholar
  76. 76.
    Kinsey, D.W., Bottomley, R.A.: J. Inst. Brewing 69, 164 (1963)Google Scholar
  77. 77.
    Kjaergaard, L.: Biotechnol. Bioeng. 18, 729 (1976)Google Scholar
  78. 78.
    Kliner, A.A.: Brit. Chem. Eng. 10, 537 (1965)Google Scholar
  79. 79.
    Kok, R., Zajic, J.E.: Can. J. Chem. Eng. 51, 782 (1973)Google Scholar
  80. 80.
    Kok, R., Zajic, J.E.: Biotechnol. Bioeng. 17, 527 (1975)Google Scholar
  81. 81.
    Kok, R.: Biotechnol. Bioeng. 18, 729 (1976)Google Scholar
  82. 82.
    Kolthoff, I.M., Lingane, J.J.: Polarography. New York: Interscience 1952Google Scholar
  83. 83.
    Krebs, W.M., Haddad, I.A.: In: Developments in industrial microbiology, Vol. 13. Washington D.C.: Chap. 11. Am. Inst. Biol. Sci. 1972Google Scholar
  84. 84.
    Kreuzer, F., Kimmich, H.P.: In: Measurement of oxygen. Degn, H., Balslev, I., Brook, R. (eds.), p. 123. New York: Elsevier Sci. Pub. Co. 1976Google Scholar
  85. 85.
    LaForce, R.C.: In: Polarographic oxygen sensors. Fatt, I. (ed.). Ohio: CRC Press 1976Google Scholar
  86. 86.
    Lee, Y.H.: Ph. D. Thesis. Purdue University 1977Google Scholar
  87. 87.
    Lee, Y.H., Tsao, G.T., Wankat, P.C.: Ind. Eng. Chem. Fundam. 17, 59 (1978)Google Scholar
  88. 88.
    LeFevre, M.E.: J. Appl. Physiol. 26, 844 (1969)Google Scholar
  89. 89.
    LeFevre, M.E., Wyssbrad, H.R., Brodsky, W.A.: Bioscience 20, 761 (1970)Google Scholar
  90. 90.
    Linek, V.: Biotechnol. Bioeng. 14, 285 (1972)Google Scholar
  91. 91.
    Linek, V., Sobotka, M., Prokop, A.: Biotech. Bioeng. Symp. 4, 429 (1973)Google Scholar
  92. 92.
    Linek, V., Vacek, V.: Biotechnol. Bioeng. 18, 1537 (1976)Google Scholar
  93. 93.
    Linek, V., Benes, P.: Biotechnol. Bioeng. 19, 741 (1977)Google Scholar
  94. 94.
    Linek, V., Vacek, V.: Biotechnol. Bioeng. 19, 983 (1977)Google Scholar
  95. 95.
    Linek, V., Vacek, V.: Biotechnol. Bioeng. 20, 305 (1978)Google Scholar
  96. 96.
    Linek, V., Benes, P.: Biotechnol. Bioeng. 20, 903 (1978)Google Scholar
  97. 97.
    Lipner, H., Witherspoon, L.R., Champeaux, V.C.: Anal. Chem. 36, 204 (1964)Google Scholar
  98. 98.
    Liu, M.S., Branion, R.M.R., Duncan, D.W.: Biotechnol. Bioeng. 15, 213 (1973)Google Scholar
  99. 99.
    Lloyd, B.B., Seaton, B.: J. Physiol. (London) 207, 29 (1970)Google Scholar
  100. 100.
    Lübbers, D.W.: Progr. Resp. Res. 3, 112 (1969)Google Scholar
  101. 101.
    Lübbers, D.W., Baumgärtl, H., Fabel, H., Huch, A., Kessler, M., Kunze, K.: Progr. Resp. Res. 3, 136 (1969)Google Scholar
  102. 102.
    Lundsgaard, J.S.: In: Measurement of oxygen. Degn, H., Balslev, J., Brook, R. (eds.), p. 159. New York: Elsevier Scientific Pub. Co. 1976Google Scholar
  103. 103.
    Lundsgaard, J.S., Gronlund, J., Degn, H.: Biotechnol. Bioeng. 20, 809 (1978)Google Scholar
  104. 104.
    Mackereth, F.J.H.: Rev. Sci. Instr. 41, 38 (1964)Google Scholar
  105. 105.
    Mancy, K.H., Westgarth, W.C.: J. Water Pollut. Control 34, 1037 (1962)Google Scholar
  106. 106.
    Mancy, K.H., Okun, D.A., Reilley, C.N.: J. Electroanal. Chem. 4, 65 (1962)Google Scholar
  107. 107.
    Mclennan, D.G., Pirt, S.J.: J. Gen. Microbiol. 45, 289 (1966)Google Scholar
  108. 108.
    Mertu, K., Dunn, I.J.: Biotechnol. Bioeng. 18, 591 (1976)Google Scholar
  109. 109.
    Misra, H.P., Fridovich, I.: Anal. Biochem. 70, 632 (1976)Google Scholar
  110. 110.
    Modern Plastics Encyclopedia 51 (10A), 730 (1974–1975)Google Scholar
  111. 111.
    Moian, F., Kettel, L.J., Cugell, D.W.: J. Appl. Physiol. 21, 725 (1966)Google Scholar
  112. 112.
    Morisi, G., Gualandi, G.: Biotechnol. Bioeng. 8, 625 (1965)Google Scholar
  113. 113.
    Newley, R., Macpherson, P.B.: Wear 45, 395 (1977)Google Scholar
  114. 114.
    Niedrach, L.W., Stoddard, W.H.: U.S. Patent 3, 703, 457 (1972)Google Scholar
  115. 115.
    Nikolaev, P.I., Polyanskii, V.P., Kantere, V.M., Kharitonova, E.V.: Theoretical foundations of Chem. Eng. (Engl. Translation) 10, 13 (1976)Google Scholar
  116. 116.
    Ohashi, M., Watabe, T.: Paper presented in 2nd International Conf. on Computer Applications in Fermentation Tech., August 28–30, U. of Penn., U.S.A. 1978Google Scholar
  117. 117.
    Orbispheres Tech. Bull., Orbisphere Lab., York, Maine (1976)Google Scholar
  118. 118.
    Phillips, D.H., Johnson, M.J.: Biochem. Microbiol. Technol. Eng. 3, 261 (1961)Google Scholar
  119. 119.
    Pittman, R.W.: Nature 195, 449 (1962)Google Scholar
  120. 120.
    Radlett, P.J., Breame, A.J., Telling, R.C.: Lab. Pract. 21, 81 (1972)Google Scholar
  121. 121.
    Parker, D.H., Clifton, J.S.: Phys. Med. Biol. 12, 193 (1967)Google Scholar
  122. 122.
    Reeves, J.R.: Water & Sewage Works, Feb 44 (1976)Google Scholar
  123. 123.
    Rexnord Technical Bulletine 773, Rexnord ppb DO analyzer, Rexnord Co., Malvern, Pennsylvania 1977Google Scholar
  124. 124.
    Robinson, C.W., Wilke, C.R.: Biotechnol. Bioeng. 15, 755 (1973)Google Scholar
  125. 125.
    Roughton, F.J.W., Scholander, P.F.: J. Biol. Chem. 148, 541 (1943)Google Scholar
  126. 126.
    Rowley, B.I.: In: Automation, mechanization, and data handling in microbiology. Baillie, A., Gilbert, R.J. (eds.), p. 163. New York: Acad. Press 1970Google Scholar
  127. 127.
    Sawyer, D.T., Interrante, L.V.: J. Electroanal. Chem. 2, 310 (1961)Google Scholar
  128. 128.
    Schuler, R., Kreuzer, F.: Progr. Resp. Res. 3, 64 (1969)Google Scholar
  129. 129.
    Schuchhardt, S., Lösse, B.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 108. London: University Press 1973Google Scholar
  130. 130.
    Severinghaus, J.W.: Clin. Chem. 9, 727 (1963)Google Scholar
  131. 131.
    Severinghaus, J.W.: Annal. N.Y. Acad. Sci. 148, 115 (1968)Google Scholar
  132. 132.
    Siedell, A., Linke, W.F.: Solubilities of inorganic and metal organic compounds, 4th ed., Vol. 2. Amer. Chem. Soc. 1965Google Scholar
  133. 133.
    Silver, I.: Med. Electron. Biol. Eng. 1, 547 (1963)Google Scholar
  134. 134.
    Silver, I.A.: Med. Elect. Biol. Eng. 3, 377 (1965)Google Scholar
  135. 135.
    Silver, I.A.: Adv. in Chem. Ser. 118, 343 (1973)Google Scholar
  136. 136.
    Silver, I.A.: Adv. Expt. Med. Biol. 37A, 7 (1974)Google Scholar
  137. 137.
    Siu, W., Cobbold, R.S.C.: Med. Biol. Eng. 14, 109 (1976)Google Scholar
  138. 138.
    Stuck, J.D., Howell, J.A., Cullinan, H.T., Jr.: J. Theor. Biol. 31, 509 (1971)Google Scholar
  139. 139.
    Tsao, G.T., Lee, D.D.: Amer. INst. Chem. Eng. J. 21, 979 (1975)Google Scholar
  140. 140.
    Tsao, G.T., Lee, Y.H.: Ann. Reports in Ferm. Proc. 1, 115 (1977)Google Scholar
  141. 141.
    Tuffile, C.M., Pinho, F.: Biotechnol. Bioeng. 12, 849 (1970)Google Scholar
  142. 142.
    Vincent, A.: Process Biochem. April, 19 (1974)Google Scholar
  143. 143.
    Votruba, J., Sobotka, M.: Biotechnol. Bioeng. 18, 1815 (1976)Google Scholar
  144. 144.
    Votruba, J., Sobotka, M., Prokop, A.: Biotechnol. Bioeng. 19, 435 (1977)Google Scholar
  145. 145.
    Votruba, J., Sobotka, M., Prokop, A.: Biotechnol. Bioeng. 20, 913 (1978)Google Scholar
  146. 146.
    Wennberg, L.A.: J. Appl. Physiol. 38, 540 (1975)Google Scholar
  147. 147.
    Wernau, W.C., Wilke, C.R.: Biotechnol. Bioeng. 15, 571 (1973)Google Scholar
  148. 148.
    Whalen, W.J., Riley, J., Nair, P.: J. Appl. Physiol. 23, 798 (1967)Google Scholar
  149. 149.
    Whalen, W.J.: Progr. Resp. Res. 3, 158 (1969)Google Scholar
  150. 150.
    Wilke, C.R., Chang, P.: Amer. Inst. Chem. Eng. J. 1, 264 (1955)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Young H. Lee
    • 1
  • George T. Tsao
    • 2
  1. 1.Department of Chemical EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations