Advertisement

Power consumption in aerated stirred tank reactor systems

  • Heinz Brauer
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 13)

Abstract

The aim of this contribution is to give all biochemists and biochemical engineers working in the field of biotechnology an insight into the information which is available on energy transfer in mixing equipment under various operational conditions.

Keywords

Vortex Sheet Bubble Movement Bubble Generation Paddle Stirrer Laminar Flow Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols

b

thickness of blade and paddle

dk

diameter of hole centre line of disk stirrer

dL

hole diameter of disk stirrer

dr

stirrer diameter

ds

plate diameter of turbine stirrer

D

vessel diameter

e

distance between stirrer and bottom of vessel

g

gravitational acceleration

hp

Pitch of propeller

hr

height of stirrer

hs

plate stickness of turbine stirrer

hw

height of rotating axis in liquid

H

liquid height of vessel

k

consistency factor

l

length of blade and paddle

m

fluid index

n

number of revolutions

N

energy transferred by the stirrer to the fluid

s

radial length of baffle

w

local velocity

γ

shear rate

η

fluid viscosity

ϱ

fluid density

τ

shear stress

b* ≡ b/D

blade thickness ratio

c

number of blades and paddles

dr* ≡ dr/D

stirrer diameter ratio

D* ≡ l/dr*

vessel diameter ratio

ds* ≡ ds/D

plate diameter ratio

dw* ≡ dw/D

rotating shaft diameter ratio

Ga ≡ dr3 g ϱ2/gh2

Galileo number

hr* ≡ hr/D

stirrer height ratio

hs* ≡ hs/D

plate thickness ratio

hw* ≡ hw/D

rotating shaft height ratio

H* ≡ H/D

liquid height ratio

i

number of baffles

k* ≡ k/D

baffle thickness ratio

l* ≡ 1/D

blade length ratio

Ne ≡ N/dr5 n3ϱ

Newton number

Re ≡ n dr2ϱ/η

Reynolds number

Rem ≡ n2−mdr2ϱ/k

Reynolds number for power law fluids

s* ≡ s/D

baffle length ratio

z

number of holes in disk stirrers

6 References

  1. 1.
    Taguchi, H.: The nature of fermentation fluids. In: Adv. Biochemical Eng., Vol. 1., p. 1. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  2. 2.
    Brauer, H.: Grundlagen der Einphasen-und Mehrphasenstr ömungen. Aarau, Frankfurt: Sauerländer 1971Google Scholar
  3. 3.
    Biesecker, B.O.: Begasen von Flüssigkeiten mit Rührern. VDI-Forschungsheft 554. Düsseldorf: VDI-Verlag GmbH 1972Google Scholar
  4. 4.
    van't Riet, K.: Turbine agitator hydrodynamics and dispersion performance. Dissertation, T. H. Delft 1975Google Scholar
  5. 5.
    Brauer, H.: Chem.-Ing.-Techn. 39,209 (1967)Google Scholar
  6. 6.
    Brauer, H., Mewes, D.: Chem.-Ing.-Techn. 45, 461 (1973)Google Scholar
  7. 7.
    Brauer, H., Schmidt-Traub, H.: Chem.-Ing.-Techn. 44, 1237 (1972)Google Scholar
  8. 8.
    Ihme, F. Fortschr.-Ber. BDI-Z. Reihe 7, Nr. 44Google Scholar
  9. 9.
    Schilo, D.: Leistungsbedarf beim Rühren nicht-Newtonscher Flüssigkeiten. Dissertation D 83, Techn. Univ. Berlin 1968Google Scholar
  10. 10.
    Nagata, S., Yamamoto, K., Hashimoto, K., Naruse, Y.: Mem. Fac. Eng. Kyoto University 21, 260(1959)Google Scholar
  11. 11.
    Thiele, H.: Strömung und Leistungsbedarf beim Rühren Newtonscher Flüssigkeiten mit Anker-, Blatt-und Turbinenrührern im laminaren Bereich. Dissertation, Technische Universität, Berlin 1972Google Scholar
  12. 12.
    Brauer, H., Thiele, H.: Grundlagen für die Dimensionierung von Rührern und Rührgefäßen. Dechema Monographien, p. 69. Weinheim/Bergstr.: Verlag Chemie GmbH 1971Google Scholar
  13. 13.
    Glaeser, H., Biesecker, B., Brauer, H.: Verfahrenstechnik 7, 31 (1973)Google Scholar
  14. 14.
    Metzner, A.B., Otto, R.E.: A.I.Ch.E. Journal 3, 3 (1957)Google Scholar
  15. 15.
    Calderbank, P.H., Moo-Young, M.B.: Trans. Instn. Chem. Engrs. 39, 337 (1961)Google Scholar
  16. 16.
    Höcker, H., Langer, G.: Rheol. Acta 16, 400 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Heinz Brauer
    • 1
  1. 1.Institut für ChemieingenieurtechnikTechnische Universität BerlinBerlinWest Germany

Personalised recommendations