Synthesis of Polychloroalkanes

  • Vladimir A. NikiforovEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 10)


This chapter describes the preparation of polychloroalkanes (chlorinated paraffines, PCA) as analytical standards. A list of commercially available PCA standards is given. General methods for the synthesis of PCAs are reviewed. Possibilities of the synthesis of other PCA congeners as standards are discussed. References to the original syntheses are tabulated. A selection of synthetic procedures is collected in the Appendix.


Chlorinated paraffines Chlorine Polychloroalkanes Synthesis 


  1. 1.
    Bayen S, Obbard JP, Thomas GO (2006) Chlorinated paraffins: A review of analysis and environmental occurrence. Environ Int 32:915–929CrossRefGoogle Scholar
  2. 2.
    Tomy GT, Stern GA, Muir DCG et al (1997) Quantifying C10–C13 Polychloroalkanes in Environmental Samples by High-Resolution Gas Chromatography/Electron Capture Negative Ion High-Resolution Mass Spectrometry. Anal Chem 69:2762–2771CrossRefGoogle Scholar
  3. 3.
    El-Morsi TM, Emara MM, Abd El Bary HMH et al (2002) Homogeneous degradation of 1, 2, 9, 10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light. Chemosphere 47:343–348CrossRefGoogle Scholar
  4. 4.
    Fisk AT, Cymbalisty CD, Tomy GT et al (1998) Dietary accumulation and depuration of individual C10-, C11- and C14-polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 43:209–221CrossRefGoogle Scholar
  5. 5.
    Coelhan M, Saraci M, Lahaniatis ES et al (1998) Contribution to the quantification of C10-chloroparaffines: Part 1. First time quantification of C10-chloroparaffines with purely synthesized chloroalkanes as standards. Fresenius Environ Bull 7:353–60Google Scholar
  6. 6.
    Coelhan M (2003) Synthesis of several single C10, C11, and C12 chloroalkanes. Fresenius Environ Bull 12:442–9Google Scholar
  7. 7.
    Tomy GT, Billeck B, Stern GA (2000) Synthesis, isolation and purification of C10–C13 polychloro-n-alkanes for use as standards in environmental analysis. Chemosphere 40:679–83CrossRefGoogle Scholar
  8. 8.
    Beaume FN (2005) Bestimmung von C10-Chlorparaffinen mit einem synthetisierten Standard in Lebensmitteln. Ph.D. Thesis, Technical University of Munich, GermanyGoogle Scholar
  9. 9.
    Beaume F, Coelhan M, Parlar H (2006) Determination of C10-chloroalkane residues in fish matrices by short column gas chromatography/electron capture negative ion low resolution mass spectrometry applying single pure and representative synthesized chlorodecanes as standards. Anal Chim Acta 565:89–96CrossRefGoogle Scholar
  10. 10.
    Frenzen G, Sippel H, Coelhan M (1999) The relative configuration of a stereoisomer of 1, 2, 5, 6, 9, 10-hexachlorodecane. Acta Cryst. doi: 10.1107/S0108270199099965 Google Scholar
  11. 11.
    Bart JCJ, Bassi IW, Calcaterra M (1979) Molecular and crystal structure of meso-(RS)-l, l, l, 3, 6, 8, 8, 8-octachlorooctane. Acta Cryst B35:2646–2650Google Scholar
  12. 12.
    Bassi IW, Scordamaglia R (1974) The addition halogenation of poly(1-alkenylene)s, 5. X-ray crystal structures of (RS)-1, 2, 5, 6-tetrachlorohexane and (RRSS)-2, 3, 6, 7-tetrachloroctane. Makromol Chem 175:1641–1650CrossRefGoogle Scholar
  13. 13.
    Ransley DL (1968) Long-range effects in the alkylation of benzene with dichloroalkanes. J Org Chem 33(4):517–522CrossRefGoogle Scholar
  14. 14.
    Tordeux M, Boumizane K, Wakeelman C (1993) Preparation of gem-dichloroalkanes from oximes. J Org Chem 58:1939–1940CrossRefGoogle Scholar
  15. 15.
    Ransley DL (1969) Long-range effects in the alkylation of benzene with polyhalooctanes. J Org Chem 34(9):2618–2621CrossRefGoogle Scholar
  16. 16.
    Jensen SR, Brown WA, Heath E et al (2007) Characterization of polychlorinated alkane mixtures - a Monte Carlo modeling approach. Biodegradation 18:703–717CrossRefGoogle Scholar
  17. 17.
    Ramage MP, Eckert RE (1975) Kinetics of the liquid phase chlorination of n-dodecane. Ind Eng Chem Fundam 14(3):214–221CrossRefGoogle Scholar
  18. 18.
    Turro NJ, Fehlner JR, Hessler DP et al (1988) Photochlorination of n-alkanes adsorbed on pentasil zeolites. J Org Chem 53(16):3731–3735CrossRefGoogle Scholar
  19. 19.
    Turro NJ, Han N, Lei X et al (1995) Mechanism of dichlorination of n-dodecane and chlorination of 1-chlorododecane adsorbed on ZSM-5 zeolite molecular sieves. A supramolecular structural interpretation. J Am Chem Soc 117:4881–4893CrossRefGoogle Scholar
  20. 20.
    Dneprovkii AS, Miltsov SA (1986) Mechanisms of free-radical reactions. XIX. Selectivity of the free-radical chlorination of 1-chloroalkanes by N-chloropiperidine. Zh Org Khim (Russ) 22(2):265–269Google Scholar
  21. 21.
    Dneprovkii AS, Miltsov SA, Arbuzov PV (1988) Mechamisms of free-radical reactions. XXIV. Quantitative description of the polar effects of substituents on the kinetics of the free-radical chlorination of aliphatic compounds by N-chloropiperidine. Zh Org Khim (Russ) 24(10):2026–2037Google Scholar
  22. 22.
    Kharasch MS, Jensen EV, Urri WH (1945) Addition of carbon tetrachloride and chloroform to olefins. Science 102:128CrossRefGoogle Scholar
  23. 23.
    Kharasch MS, Urri WH, Jensen EV (1945) Addition of derivatives of chlorinated acetic acids to olefins. J Am Chem Soc 67:1626CrossRefGoogle Scholar
  24. 24.
    Kharasch MS, Jensen EV, Urri WH (1945) The addition of phosphorous trichloride to olefins. J Am Chem Soc 67:1863–1864CrossRefGoogle Scholar
  25. 25.
    Kharasch MS, Jensen EV, Urri WH (1946) Addition of carbon tetrabromide and bromoform to olefins. J Am Chem Soc 68:154–155CrossRefGoogle Scholar
  26. 26.
    Kharasch MS, Jensen EV, Urri WH (1947) Reactions of atoms and free radicals in solution. X. The addition of polyhalomethanes to olefins. J Am Chem Soc 69:1100–1105CrossRefGoogle Scholar
  27. 27.
    ETs C, Kuz'mina NA, Freidlina RKh (1970) A new reaction of the CCl3 group in polychlorohydrocarbons. Izv Akad Nauk SSSR Ser Khim 10:2343–2351Google Scholar
  28. 28.
    ETs C, Kuz'mina NA, Rozhkova MA et al (1982) Reaction of 1, 1, 1, 3-tetrachloropropane with 1-hexene, initiated by Fe(CO)5, Mo(CO)6 and Mn2(CO)10. Izv Akad Nauk SSSR Ser Khim 6:1345–1349Google Scholar
  29. 29.
    Kamyshova AA, ETs C, Freidlina RKh (1973) Reaction of 1, 1, 1-trichloroethane or carbon tetrachloride with allyl chloride, initiated by the Fe(CO)5-isopropanol system. Izv Akad Nauk SSSR Ser Khim 9:2004–2008Google Scholar
  30. 30.
    Kruglova NV, Freidlina RKh (1984) Reduction of 1, 1, 1-trichloroethane and its addition to 1-heptene initiated by tert-butyl peroxide or Fe(CO)5 in the presence of triethylsilane. Izv Akad Nauk SSSR Ser Khim 2:388–392Google Scholar
  31. 31.
    Rybakova NA, ETs C, Freidlina RKh (1979) Addition of 1, 1, 1, 3-tetrachloropropane to 1-hexene, initiated by system Fe(CO)5 + HMPA + p-ClC6H4SO2NCl2. Izv Akad Nauk SSSR Ser Khim 11:2618–2620Google Scholar
  32. 32.
    Zhiryukhina NP, Kamyshova AA, ETs C et al (1983) Synthesis of polychloroalkanes with several different chlorine-containing groups. Izv Akad Nauk SSSR Ser Khim 1:152–157Google Scholar
  33. 33.
    Freidlina RKh, Osipov BN (1971) Telomerization of ethylene with 1, 1, 1, 3-tetrachloropropane in the presence of iron pentacarbonyl and isopropyl alcohol. Izv Akad Nauk SSSR Ser Khim 12:2837–2839Google Scholar
  34. 34.
    Freidlina RKh, Kuz'mina NA, Kamyshova AA et al (1977) Reaction of gem-trichloroalkanes with unsaturated compounds in presence of Fe(CO)5 and a cocatalyst. Izv Akad Nauk SSSR Ser Khim 1:174–177Google Scholar
  35. 35.
    Kuz'mina NA, ETs C, Freidlina RKh (1978) Telomerization of 2-chloropropene with 1, 1, 1-trichloroethane. Izv Akad Nauk SSSR Ser Khim 12:2827–2828Google Scholar
  36. 36.
    ETs C, Freidlina RKh (1972) Telomerization of butadiene with 1, 1, 1-trichloroethane and 1, 1, 1, 3-tetrachloropropane. Izv Akad Nauk SSSR Ser Khim 2:468–470Google Scholar
  37. 37.
    Destarac M, Bessiere J-M, Boutevin B (1998) Atom transfer radical polymerization of styrene initiated by polychloroalkanes and catalyzed by CuCl/2, 2-bipyridine: A kinetic and mechanistic study. J Polymer Sci A: Polym Chem 36:2933–2947CrossRefGoogle Scholar
  38. 38.
    Burton DJ, Kehoe LJ (1970) Copper chloride-ethanolamine catalyzed addition of polyhaloalkanes to 1-octene. J Org Chem 35:1339–1342CrossRefGoogle Scholar
  39. 39.
    Freidlina RKh, ETs C (1962) Use of oxidation-reduction systems for the initiation of 1-octene with carbon tetrachloride. Izv Akad Nauk SSSR Otd Khim Nauk 10:1788–I788Google Scholar
  40. 40.
    Davis R, Groves IF (1982) The reaction of tetrachloromethane with oct-1-ene in the presence of [Mo2(CO)6(η-C5H5)2] and other transition-metal complexes. J Chem Soc Dalton Trans 2281-2287Google Scholar
  41. 41.
    Davis R, Durrant JLA, Khazal NMS et al (1990) The addition of halogenocarbons to alkenes in the presence of [Fe2(CO)4(η-C5H5)2] and related complexes. J Organomet Chem 386:229–239CrossRefGoogle Scholar
  42. 42.
    Shvo Y, Green R (2003) Addition of α-polyhalides to olefins under mild reaction conditions, catalyzed by Mo(CO)6. J Organomet Chem 675:77–83CrossRefGoogle Scholar
  43. 43.
    Davis R, Khazaal NMS, Maistry V (1986) Addition of halogenocarbons or dihydrogen to alkenes in the presence of [Fe2(CO)4(η-C5H5)2]: Catalysis by a dinuclear species. J Chem Soc Chem Commun 1387–1389Google Scholar
  44. 44.
    Davis R, Furze JD, Cole-Hamilton DJ et al (1992) The mechanism of the addition of haloalkanes to alkenes in the presence of [RuH3(SiMe2Ph)(PPh3)3] and [RuH2(PPh3)4]. J Organomet Chem 440:191–196CrossRefGoogle Scholar
  45. 45.
    Matsumoto H, Nakano T, Nagai Y et al (1978) Catalysis by phosphine complexes of silylruthenium hydrides of the addition of carbon tetrachloride to 1-octene. Bull Chem Soc Jap 51(8):2445–2446CrossRefGoogle Scholar
  46. 46.
    Bland WJ, Davis R, Durrant JLA (1985) The mechanism of the addition of haloalkanes to alkenes in the presence of dichlorotris(triphenylphosphine)-ruthenium(II) [RuCl2(PPh3)3]. J Organomet Chem 280:397–406CrossRefGoogle Scholar
  47. 47.
    Richel A, Demonceau A, Noels AF (2006) Electrochemistry as a correlation tool with the catalytic activities in [RuCl2(p-cymene)(PAr3)]-catalyzed Kharasch additions. Tetr Lett 47:2077–2081CrossRefGoogle Scholar
  48. 48.
    Tutusaus O, Delfosse S, Demonceau A et al (2003) Kharasch addition catalysed by half-sandwich ruthenium complexes. Enhanced activity of ruthenacarboranes. Tetr Lett 44:8421–8425CrossRefGoogle Scholar
  49. 49.
    Freidlina RKh, Vasil'eva EI (1958) Hydrolysis of polyhalohydrocarbons containing the CHal3 or CCl2=CH group. Russ Chem Bull 7(1):32–35CrossRefGoogle Scholar
  50. 50.
    Saotome K, Komoto H, Yamazaki T (1966) The synthesis of α, ω-disubstituted higher alkanes from α, α, α, ω-tetrachloroalkanes. Bull Chem Soc Jap 39:480–484CrossRefGoogle Scholar
  51. 51.
    Mayer Z (1974) Thermal decomposition of polyvinyl chloride and of its low-molecular-weight model compounds. Polymer Rev 10:263–292Google Scholar
  52. 52.
    Smirnov VV, Tarkhanova IG, Kokorin AI et al (2005) Catalytic activity of immobilized transition metal complexes with monoethanolamine in carbon tetrachloride addition to multiple bonds. Kinet Katal 46(6):909–914Google Scholar
  53. 53.
    Tarkhanova IG, Smirnov VV, Rostovshchikova TN (2001) Distinctive characteristics of carbon tetrachloride addition to olefins in the presence of copper complexes with donor ligands. Kinet Katal 42(2):216–222CrossRefGoogle Scholar
  54. 54.
    Tarkhanova IG, Gantman MG, Chizhov AO et al (2006) Addition of tetrachloromethane to oct-1-ene initiated by amino alcohols. Russ Chem Bull Int Ed 55(9):1624–1630CrossRefGoogle Scholar
  55. 55.
    Mitani M, Kiriyama T, Kuratate T (1994) Addition reaction of polychloro compounds to carbon-carbon multiple bonds catalyzed by semiconductor particles under photoirradiation. J Org Chem 59:1279–1282CrossRefGoogle Scholar
  56. 56.
    Joyce RM, Hanford WE, Harmon J (1948) Free radical-initiated reaction of ethylene with carbon tetrachloride. J Am Chem Soc 70(5):2259–2262Google Scholar
  57. 57.
    Asscher M, Levy E, Rosin H et al (1963) Telomerization of ethylene and carbon tetrachloride. Novel initiating system. Ind Eng Chem Prod Res Dev 2(2):121–126CrossRefGoogle Scholar
  58. 58.
    Nesmeianov AN, Kareptian ShA, Freidlina RKh (1956) Synthesis of higher α, α, α, ω-tetrachloroalkanes and 1, 1, 1-trichloroalkanes. Proc Acad Sci USSR 109(4):791Google Scholar
  59. 59.
    Karapet'yan ShA, Zelenskaya LG, Kruglova NV et al (1966) Infrared spectra, molecular volumes and refractions of α, α, α, ω-tetrachloroalkanes and α, α, ω-trichloroalkenes, containing five to eleven carbon atoms. Izv Akad Nauk SSSR Ser Khim 8:1355–1360Google Scholar
  60. 60.
    Nesmeyanov AN, Semenov NA (1959) Preparation of α, α, ω-trichloroalkenes from α, α, α, ω-tetrachloroalkanes. Russ Chem Bull 8(12):2022–2024CrossRefGoogle Scholar
  61. 61.
    Freidlina RKh, Belyavskii AB (1961) Telomerization of ethylene and carbon tetrachloride or chloroform in the presence of the hexacarbonyls of chromium, molybdenum and tungsten. Izv Akad Nauk SSSR Otd Khim Nauk 1:177–178Google Scholar
  62. 62.
    Kuz'mina NA, ETs C, Freidlina RKh (1977) Telomerization of vinylidenechloride with 1, 1, 1, 3-tetrachloropropane. Izv Akad Nauk SSSR Ser Khim 4:921–924Google Scholar
  63. 63.
    Zakharkin LI (1963) Interaction of ethylmagnesium bromide with 1, 1, 1, 5-tetrachloropentane. Izv Akad Nauk SSSR Otd Khim Nauk 5:939–941Google Scholar
  64. 64.
    Kiseleva LN, Rybakova NA, Kuz'mina NA et al (1981) Hydrogen migration in 1, 1-dichloroalkyl radicals. Izv Akad Nauk SSSR Ser Khim 9:2095–2098Google Scholar
  65. 65.
    Kuz'mina NA, Zhiryukhina NP, ETs C et al (1981) Reduction of α, α, α-trichloromethylcompounds in the presence of metal carbonyls. Izv Akad Nauk SSSR Ser Khim 9:2090–2094Google Scholar
  66. 66.
    Petrova RG, Freidlina RKh (1970) The reduction of α, α, α, ω-tetrachloroalkanes by the action of thiols in the presence of iron compounds. Izv Akad Nauk SSSR Ser Khim 7:1574–1577Google Scholar
  67. 67.
    Rybakova NA, Kiseleva LN (1981) Radical transformations of 1, 1, 1, 3-tetrachlorononane caused by initiating systems based on Fe(CO)5 and containing various hydrogen donors. Izv Akad Nauk SSSR Ser Khim 7:1636–1638Google Scholar
  68. 68.
    Kost TA, Freidlina RKh (1967) Catalytic hydrogenation of polychloroalkenes containing a CCl3C-CH2 or CCl2=CCHCl group. Izv Akad Nauk SSSR Ser Khim 12:2715–2719Google Scholar
  69. 69.
    Kiseleva LN, Rybakova NA, Freidlina RKh (1983) Reactions of 1, 3, 3, 5-Tetrachloropentane, initiated by Fe, Mn, and Mo carbonyl in the presence of dimethylformamide. Izv Akad Nauk SSSR Ser Khim 10:2408–2410Google Scholar
  70. 70.
    Kiseleva LN, Rybakova NA, Freidlina RKh (1986) Hydrogenolysis of the C-C1 bond of the dichloromethyl group in polychloroalkanes, initiated by Fe(CO)5, Mn2(CO)10, or tert-butyl peroxide in combination with triethylsilane. Izv Akad Nauk SSSR Ser Khim 5:1136–1138Google Scholar
  71. 71.
    Rybakova NA, Kiseleva LN, Freidlina RKh (1984) Chemical transformations of 1, 3, 3, 5-tetrachlorononane initiated by Fe(CO)5, Me(CO)6 and Mn2(CO)10 systems. Izv Akad Nauk SSSR Ser Khim 11:2623–2626Google Scholar
  72. 72.
    Freidlina RKh, Kost TA (1960) Action of nucleophilic reagents on compounds of the type [Cl(CH2)nCCl=]2. Izv Akad Nauk SSSR Otd Khim Nauk 8:1887–1390Google Scholar
  73. 73.
    Nesmeyanov AN, Zakharkin LI, Kost TA (1955) Synthesis of dodecanoic and hexadecanoic acids. Izv Akad Nauk SSSR Otd Khim Nauk 4:585–590Google Scholar
  74. 74.
    Mubarak MS, Peters DJ (1995) Electrochemical reduction of 1, 6-dihalohexanes at carbon cathodes in dimethylformamide. J Org Chem 60:681–685CrossRefGoogle Scholar
  75. 75.
    Freidlina RKh, Kost TA (1957) Action of nucleophilic reagents on compounds of the type [Cl(CH2)nCCl2-]2. Russ Chem Bull 6(5):656–658CrossRefGoogle Scholar
  76. 76.
    Kruglova NV, Freidlina RKh (1972) Reaction of α, α-dichloro-ω-bromoalkanes and α, α-dichloro-ω-bromoalkenes with benzylmagnesium and allylmagnesium halides. Izv Akad Nauk SSSR Ser Khim 4:886–890Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Department of ChemistrySt.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations