Environmental Levels and Fate

  • Derek MuirEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 10)


The environmental levels and fate of chlorinated paraffins (CPs) are understudied compared to many other chlorinated organics with similar molecular formulas such as PCBs and chlorinated pesticides. In this review, the predicted environmental distribution and long range transport (LRT) potential of short, medium, and long chain CPs (SCCPs, MCCPs and LCCPs) homologs were evaluated using a Level III fugacity based model and the OECD LRT tool. Overall persistence (POV) ranged from 503 to 519 d and soils and sediments were predicted to be the main environmental reservoirs for CPs assuming equal emissions to air, water, and soil. Individual congeners are predicted to have quite different reactivity with hydroxyl radicals and congeners with 1,1-dichloro-substitution and adjacent unsubstituted positions on the n-alkane chains having with having in shorter atmospheric oxidation half-lives. CPs have high potential for accumulation in terrestrial food webs based on their phys–chem properties but there is limited confirmation of this. The geographical coverage of environmental levels and trends information on CPs is limited particularly for East Asia, which is now the region with the largest production of CPs. The current lack of environmental levels and fate information, while not the only knowledge gap in the information available on CPs, is a major factor in the uncertainties of recent risk assessments for these substances by regulatory authorities in Europe, Japan, and Canada.


Bioaccumulation Distribution Emission Fate Long chain chlorinated paraffins (LCCPs) Medium chain chlorinated paraffins (MCCPs) Persistence Short chain chlorinated paraffins (SCCPs) 





Stable isotope ratio of 15N to 14N

AO t1/2

Atmospheric oxidation half-life


Atmospheric Oxidation Program for Microsoft Windows (part of EPISuite)


Chlorine addition chemical ionization mass spectrometry


A structurally unique molecule that is a member of a group of related compounds


Characteristic travel distance


Environmental bioaccumulation potential


Electron-capture negative ion mass spectrometry


Estimation programs interface (EPI) suite






Having the same molecular formula


High resolution mass spectrometry


Air–water partition coefficient


Octanol–air partition coefficient


Octanol–water partition coefficient


Long chain chlorinated paraffins

Level III

Fugacity model based on the work of Mackay et al. – assumes steady state conditions


Long range transport


Long range transport atmospheric transport


Medium chain chlorinated paraffins


Tandem-mass spectrometry


Organization for economic cooperation and development


Hydroxyl radical


Polychlorinated biphenyl


Predicted environmental concentrations


Overall persistence


Quantitative structure property relationship


Short chain chlorinated paraffins


Simplified molecular input line entry


Sparc performs automated reasoning in chemistry


Transfer efficiency


Trophic magnification factor


Toxics release inventory


United States Environmental Protection Agency


Waste water treatment plant


  1. 1.
    Campbell I, McConnell G (1980) Environ Sci Technol 14:1209CrossRefGoogle Scholar
  2. 2.
    US EPA (1993) RM2 exit briefing on chlorinated paraffins and olefins. Environmental Protection Agency, Office of Pollution and Prevention of Toxics, Washington, D.C., p 42Google Scholar
  3. 3.
    European Commission (1999) European Union Risk Assessment Report: Alkanes, C10-13, chloro-, Vol. 4. European Commission, European Chemicals Bureau, Ispra, Italy, p 166Google Scholar
  4. 4.
    European Commission (2005) European Union Risk Assessment Report: alkanes, C14-17, chloro (MCCP), Vol. 58. European Commission, European Chemicals Bureau, Ispra, Italy, p 258Google Scholar
  5. 5.
    European Commission (2008) European Union Risk Assessment Report: alkanes, C10-13, chloro (SCCP), Updated version 2008. Vol. 81. European Commission, European Chemicals Bureau, Ispra, Italy, p 148Google Scholar
  6. 6.
    Environment Canada (2004) Follow-up report on a PSL1 substance for which there was insufficient information to conclude whether the substance constitutes a danger to the environment. Chlorinated Paraffins. Environment Canada, Existing Substances Division, Ottawa, ON, p 170Google Scholar
  7. 7.
    UNEP (2009) Revised draft risk profile: short-chained chlorinated paraffins. UNEP/POPS/POPRC.5/INF/18. United Nations Environment Program, Stockholm Convention on Persistent Organic Pollutants Geneva, CH, p 32Google Scholar
  8. 8.
    UNEP (2009) United Nations Environment Program, Stockholm Convention on Persistent Organic Pollutants, Geneva, CHGoogle Scholar
  9. 9.
    Tsunemi K, Tokai A (2007) J Risk Res 10:747CrossRefGoogle Scholar
  10. 10.
    Bayen S, Obbard JP, Thomas GO (2006) Environ Int 32:915CrossRefGoogle Scholar
  11. 11.
    Feo ML, Eljarrat E, Barceló D (2009) Trends Analyt Chem 28:778CrossRefGoogle Scholar
  12. 12.
    IPCS (1996) Chlorinated paraffins. Environmental Health Criteria 181. International Programme on Chemical Safety, World Health Organization, Geneva, CHGoogle Scholar
  13. 13.
    Tomy GT, Fisk AT, Westmore JB, Muir DCG (1998) Rev Environ Contam Toxicol 158:53CrossRefGoogle Scholar
  14. 14.
    Muir D, Stern G, Tomy G (2000) In: Paasivirta J (ed) The handbook of environmental chemistry, vol. 3 Part K New types of persistent halogenated compounds. Springer, BerlinGoogle Scholar
  15. 15.
    UK Environment Agency (2009) Environmental risk assessment: longchain chlorinated paraffins. Environment Agency, Wallingford, UKGoogle Scholar
  16. 16.
    US EPA (2005) Toxics Release Inventory (TRI) Program. US Environmental Protection Agency, TRI Program Division, Washington, DCGoogle Scholar
  17. 18.
    Nicholls CR, Allchin CR, Law RJ (2001) Environ Pollut 114:415CrossRefGoogle Scholar
  18. 19.
    Bergman A, Hagman A, Jacobsson S (1984) Chemosphere 13:237CrossRefGoogle Scholar
  19. 20.
    Tysklind M, Soderstrom G, Rappe C, Hagerstedt LE, Burstrom E (1989) Chemosphere 19:705CrossRefGoogle Scholar
  20. 21.
    Eurochlor (2008) About Chlorinated paraffins Eurochlor, Chlorinated Paraffins Sector Group, Brussels, BE
  21. 22.
    Mackay D, Di Guardo A, Paterson S, Cowan CE (1996) Environ Toxicol Chem 15:1627CrossRefGoogle Scholar
  22. 23.
    European Commission (2003) Technical Guidance Document on Risk Assessment. Joint Research Centre, Institute for Health and Consumer Protection, European Chemicals Bureau, Ispra, ITGoogle Scholar
  23. 24.
    US EPA (2008) EPISuite. US Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DCGoogle Scholar
  24. 25.
    Thompson RS, Noble H (2007) Short-chain chlorinated paraffins (C10-13, 65% chlori.nated): Aerobic and anaerobic transformation in marine and freshwater sediment systems. Draft Report No BL8405/B. Limited. Brixham Environmental Laboratory, AstraZeneca, UKGoogle Scholar
  25. 26.
    OECD (2006) OECD Pov & LRTP Screening Tool 2.0. Software and Manual. Organization for Economic Cooperation and Development (OECD),, Paris, France
  26. 27.
    Hilal SH, Karickhoff SW, Carreira LA (2004) QSAR Comb Sci 23:709CrossRefGoogle Scholar
  27. 28.
    Sijm DTHM, Sinnige TL (1995) Chemosphere 31:4427CrossRefGoogle Scholar
  28. 29.
    Drouillard KG, Tomy GT, Muir DCG, Friesen KJ (1998) Environ Toxicol Chem 17:1252Google Scholar
  29. 30.
    Boethling RS, Howard PH, Meylan WM, Stiteler W, Beauman J, Tirado N (1994) Environ Sci Technol 28:459CrossRefGoogle Scholar
  30. 31.
    Klasmeier J, Matthies M, MacLeod M, Fenner K, Scheringer M, Stroebe M, Le Gall AC, McKone T, Van de Meent D, Wania F (2006) Environ Sci Technol 40:53CrossRefGoogle Scholar
  31. 32.
    Shojania S (1999) Chemosphere 38:2125CrossRefGoogle Scholar
  32. 33.
    Beaume F, Coelhan M, Parlar H (2006) Anal Chim Acta 565:89CrossRefGoogle Scholar
  33. 34.
    Tomy GT, Stern GA, Muir DCG, Fisk AT, Cymbalisty CD, Westmore JB (1997) Anal Chem 69:2762CrossRefGoogle Scholar
  34. 35.
    Hüttig J, Oehme M (2006) Chemosphere 64:1573CrossRefGoogle Scholar
  35. 36.
    El-Morsi TM, Emara MM, Abd El Bary HMH, Abd-El-Aziz AS, Friesen KJ (2002) Chemosphere 47:343CrossRefGoogle Scholar
  36. 37.
    Castells P, Parera J, Santos FJ, Galceran MT (2008) Chemosphere 70:1552CrossRefGoogle Scholar
  37. 38.
    Hüttig J, Oehme M (2005) Arch Environ Contam Toxicol 49:449CrossRefGoogle Scholar
  38. 39.
    Marvin CH, Painter S, Tomy GT, Stern GA, Braekevelt E, Muir DCG (2003) Environ Sci Technol 37:4561CrossRefGoogle Scholar
  39. 40.
    Iino F, Takasuga T, Senthilkumar K, Nakamura N, Nakanishi J (2005) Environ Sci Technol 39:859CrossRefGoogle Scholar
  40. 41.
    Tomy GT, Stern GA, Lockhart WL, Muir DCG (1999) Environ Sci Technol 33:2858CrossRefGoogle Scholar
  41. 42.
    Stern GA, Braekevelt E, Helm PA, Bidleman TF, Outridge PM, Lockhart WL, McNeeley R, Rosenberg B, Ikonomou MG, Hamilton P, Tomy GT, Wilkinson P (2005) Sci Total Environ 342:223CrossRefGoogle Scholar
  42. 43.
    Přibylová P, Klánová J, Holoubek I (2006) Environ Pollut 144:248CrossRefGoogle Scholar
  43. 44.
    Stern G, Evans M (2003) B.3 Persistent organic pollutants in marine and lake sediments. In Bidleman T, Macdonald R, Stow J (eds) Sources, Occurrence, Trends and Pathways in The Physical Environment. Indian and Northern Affairs Canada, Ottawa, ON, pp 100–116Google Scholar
  44. 45.
    Moore S, Vromet L, Rondeau B (2004) Chemosphere 54:453CrossRefGoogle Scholar
  45. 46.
    Iozza S, Muller CE, Schmid P, Bogdal C, Oehme M (2008) Environ Sci Technol 42:1045CrossRefGoogle Scholar
  46. 47.
    Muir D, Bennie D, Teixeira C, Fisk A, Tomy G, Stern G, Whittle M (2001) Short Chain Chlorinated Paraffins: Are They Persistent and Bioaccumulative? ACS Symposium Series 773:184–202CrossRefGoogle Scholar
  47. 48.
    Rawn DFK, Muir DCG, Savoie DA, Rosenberg GB, Lockhart WL, Wilkinson P (2000) J Great Lakes Res 26:3CrossRefGoogle Scholar
  48. 49.
    Rodier D (1999) OECD Expert meeting on chloroparaffins and nonylphenol ethoxylates, Paris, FranceGoogle Scholar
  49. 50.
    Walker MJ (2000) OECD Expert Meeting on chloroparaffins and nonylphenol ethoxylates, Paris, FranceGoogle Scholar
  50. 51.
    Rose NL, Backus S, Karlsson H, Muir DC (2001) Environ Sci Technol 35:1312CrossRefGoogle Scholar
  51. 52.
    Wong CS, Pakdeesusuk U, Morrissey JA, Lee CM, Coates JT, Garrison AW, Mabury SA, Marvin CH, Muir DCG (2007) Environ Toxicol Chem 26:254CrossRefGoogle Scholar
  52. 53.
    Oliver BG, Charlton MN, Durham RW (1989) Environ Sci Technol 23:200CrossRefGoogle Scholar
  53. 54.
    Reth M, Zencak Z, Oehme M (2005) Chemosphere 58:847CrossRefGoogle Scholar
  54. 55.
    Reth M, Ciric A, Christensen GN, Heimstad ES, Oehme M (2006) Sci Total Environ 367:252CrossRefGoogle Scholar
  55. 56.
    Evenset A, Christensen GN, Skotvold T, Fjeld E, Schlabach M, Wartena E, Gregor D (2004) Sci Total Environ 318:125CrossRefGoogle Scholar
  56. 57.
    Evenset A, Carroll J, Christensen GN, Kallenborn R, Gregor D, Gabrielsen GW (2007) Environ Sci Technol 41:1173CrossRefGoogle Scholar
  57. 58.
    Dick TA, Gallagher C, Tomy GT (2009) Intern J Environ Waste Manag (in press)Google Scholar
  58. 59.
    Houde M, Muir DCG, Tomy GT, Whittle DM, Teixeira C, Moore S (2008) Environ Sci Technol 42:3893CrossRefGoogle Scholar
  59. 60.
    Fisk AT, Cymbalisty CD, Tomy GT, Muir DCG (1998) Aquat Toxicol 43:209CrossRefGoogle Scholar
  60. 61.
    Fisk AT, Tomy GT, Cymbalisty CD, Muir DCG (2000) Environ Toxicol Chem 19:1508Google Scholar
  61. 62.
    Fisk AT, Wiens SC, Barrie Webster GR, Bergman Ã, Muir DCG (1998) Environ Toxicol Chem 17:2019Google Scholar
  62. 63.
    Fisk AT, Hobson KA, Norstrom RJ (2001) Environ Sci Technol 35:732CrossRefGoogle Scholar
  63. 64.
    Ismail N, Gewurtz SB, Pleskach K, Whittle DM, Helm PA, Marvin CH, Tomy GT (2009) Environ Toxicol Chem 28:910CrossRefGoogle Scholar
  64. 65.
    Mills EL, Casselman JM, Dermott R, Fitzsimons JD, Gal G, Holeck KT, Hoyle JA, Johannsson OE, Lantry BF, Makarewicz JC, Millard ES, Munawar IF, Munawar M, O'Gorman R, Owens RW, Rudstam LG, Schaner T, Stewart TJ (2003) Can J Fish Aquat Sci 60:471CrossRefGoogle Scholar
  65. 66.
    Barber JL, Sweetman AJ, Thomas GO, Braekevelt E, Stern GA, Jones KC (2005) Environ Sci Technol 39:4407CrossRefGoogle Scholar
  66. 67.
    Peters AJ, Tomy GT, Jones KC, Coleman P, Stern GA (2000) Atmos Environ 34:3085CrossRefGoogle Scholar
  67. 68.
    Tomy GT (1997) Ph.D. Thesis. Department of Chemistry, University of Manitoba, Winnipeg, MB CanadaGoogle Scholar
  68. 69.
    Alaee M, Muir D, Cannon C, Helm P, Harner T, Bidleman T (2003) In: Bidleman T, Macdonald R, Stow J (eds) Sources, occurrence, trends and pathways in the physical environment. Indian and Northern Affairs Canada, Ottawa, ONGoogle Scholar
  69. 70.
    Borgen AR, Schlabach M, Gundersen H (2000) Organohalogen Compd 47:272Google Scholar
  70. 71.
    Iozza S, Schmid P, Oehme M, Bassan R, Belis C, Jakobi G, Kirchner M, Schramm KW, Kräuchi N, Moche W, Offenthaler I, Weiss P, Simončič P, Knoth W (2009) Environ Pollut 157:3225–3231CrossRefGoogle Scholar
  71. 72.
    Czub G, McLachlan MS (2004) Environ Sci Technol 38:2406CrossRefGoogle Scholar
  72. 73.
    Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Science 317:236CrossRefGoogle Scholar
  73. 74.
    Jansson B, Andersson R, Asplund L, Litzén K, Nylund K, Sellström U, Uvemo U-B, Wahlberg C, Wideqvist U, Odsjö T, Olsson M (1993) Environ Toxicol Chem 12:1163CrossRefGoogle Scholar
  74. 75.
    Zencak Z, Oehme M (2006) Trends Anal Chem 25:310CrossRefGoogle Scholar
  75. 76.
    Iozza S, Schmid P, Oehme M (2009) Environ Pollut 157:3218–3224CrossRefGoogle Scholar
  76. 77.
    Tang E (2004) China Chemical Reporter Dec 6Google Scholar
  77. 78.
    Jiang G (2009) International Symposium on Organohalogens and Persistent Organic Pollutants August 2009. Beijing, ChinaGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Aquatic Ecosystem Protection Research DivisionEnvironment CanadaBurlingtonCanada

Personalised recommendations