Advertisement

Assessing probability of paternity and the product rule in DNA systems

  • David W. Gjertson
  • Jeffrey W. Morris
Chapter
  • 97 Downloads
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 4)

Abstract

The genetic resolution of paternity disputes begins with an intricate detection of inherited traits and finishes with a statistical inference (the probability of paternity, W). Notwithstanding some initial fanfare, statistical inference is a necessary component of DNA-based paternity tests because band patterns may be rare but not yet unique, and even rare events in a vacuum are meaningless. The genetic match must be combined with other evidence for relevancy, thus a Bayesian approach is preferred when computing W. This paper reviews the standard model used to compute W and discusses the model’s various properties and assumptions. The standard model is extended to include DNA systems in which alleles are operationally continuous due to measurement error. This extension avoids problems associated with ‘matched/non-matched’ binned decisions. After outlining the model assumptions for a single DNA system, particular attention is given to the product rule — the procedure of multiplying intermediate probabilities across genetic loci to form a combined W. An empirical alternative to the product rule is also assessed and correlated with standard procedures.

Key words

DNA probability of paternity product rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agard, D.A., R.A. Steinberg and R.M. Stroud, 1981. Quantitative analysis of electrophoretograms: a mathematical approach to super-resolution. Anal. Biochem. 111: 257–268.PubMedCrossRefGoogle Scholar
  2. Archer, F., 1810. Facts illustrating a disease peculiar to the female children of Negro slaves. Med. Reposit. l: 319–323.Google Scholar
  3. Baur, M.P, C. Rittner and H.D. Wehner, 1981. The prior probability parameter in paternity testing. Its relevance and estimation by maximum likelihood, pp. 389–392 in Lectures of the Ninth International Congress of the Society for Forensic Hemogenetics. Bern.Google Scholar
  4. Baur, M.P., R.C. Elston, H. Gurtler, K. Henningsen, K. Hummel, H. Matsumoto, W. Mayr, J.W. Morris, L. Niejenhuis, H. Polesky, D. Salmon, J. Valentin and R. Walker, 1986. No fallacies in the formulation of the paternity index. Am. J. Hum. Genet. 39: 528–536.PubMedGoogle Scholar
  5. Berry, D.A., 1991. Inferences using DNA profiling in forensic iden- tification and paternity cases. Stat. Science 6: 175–205.CrossRefGoogle Scholar
  6. Berry, D.A., I.W. Evett and R. Pinchin, 1992. Statistical inference in crime investigations using deoxyribonucleic acid profiling. Appl. Statist. 41: 499–531.CrossRefGoogle Scholar
  7. Box, G.E.P. and G.C. Tiao, 1973. Bayesian inference in statistical analysis. Addison-Wesley, Reading, MA.Google Scholar
  8. Chakraborly, R. and K. Kidd, 1991. The utility of DNA typing in forensic work. Science 254: 1735–1739.CrossRefGoogle Scholar
  9. Cohen, J.S., M. Lynch and C.E. Taylor, 1991. Forensic DNA tests and Hardy-Weinberg equilibrium. Science 253: 1037–1038.CrossRefGoogle Scholar
  10. Devlin, B., N. Risch and Roeder, 1990. No excess of homozygosity at loci used for DNA fingerprinting. Science 249: 1416–1420.PubMedCrossRefGoogle Scholar
  11. Devlin, B., N. Risch and K. Roeder, 1991. Estimation of allele frequencies for VNTR loei. Am. J. Hum. Genet. 48: 662–676.PubMedGoogle Scholar
  12. Devlin, B., N. Risch and K. Roeder, 1992. Forensic inference from DNA fingerprints. J. Am. Stat. Assoc. 87: 337–350.CrossRefGoogle Scholar
  13. Dykes, D.D., 1987. Parentage testing using restriction fragment length polymorphisms (RFLPs), pp. 59–85 in Clinical Application of Genetic Engineering, edited by L.C. Lasky and J.M. Edwards-Moulds. American Association of Blood Banks, Arlington, Virginia.Google Scholar
  14. Elder, J.K., A. Amos, E.M. Southern and G.A. Shippey, 1983. Measurement of DNA length by gel electrophoresis. I. Improved accuracy of mobility measurements using a digital microdensitometer and computer processing. Anal. Biochem. 128: 223–226.PubMedCrossRefGoogle Scholar
  15. Essen-Möller, E., 1938. Die Beweiskraft der Ahnlichkeit im Vaterschaftsnachweis - theoretische Grundlagen. Mitt. Anthrop. Ges. ( Wien ) 68: 9–53.Google Scholar
  16. Essen-Möller, E. and C.E. Quensel, 1939. Zur Theories des vaterschaftsnachweises Aufgrund von Ahnlichkeitsbefunden. Z. Ges. Gerichtl. Med. 31: 70–96.Google Scholar
  17. Evett, I.W., D.J. Werrett and J.S. Buckleton, 1989. Paternity calculations from DNA multilocus profiles. J. Forens. Sci. Soc. 29: 249–254.CrossRefGoogle Scholar
  18. Ferguson, T.S., 1967, Mathematical statistics, a decision theoretic approach. Academic Press, Inc., New York.Google Scholar
  19. Gjertson, D.W., M.R. Mickey, J. Hopfield, T. Takenouchi and P.I. Terasaki, 1988. Calculation of probability of paternity using DNA sequences. Am. J. Hum. Genet. 43: 860–869.PubMedGoogle Scholar
  20. Gjertson, D.W., J. Hopfield, P.A. Lachenbruch, M.R. Mickey, T. Sublett, C. Yuge and P.I. Terasaki, 1990. Measurement error in determination of band size for highly polymorphic single-locus DNA markers, pp. 3–11 in Advances in Forensic Haemogenetics 3, edited by H.F. Polesky and W.R. Mayr. Springer-Verlag, Heidelberg.Google Scholar
  21. Goldgar, D.E. and E.A. Thompson, 1988. Bayesian interval estimation of genetic relationships: application to paternity testing. Am. J. Hum. Genet. 42: 135–142.PubMedGoogle Scholar
  22. Gurtler, H., 1956. Principles of blood group statistical evaluation of paternity cases at the University Institute of Forensic Medicine Copenhagen. Acta. Med. Leg. Soc. ( Liege ) 9: 83–94.Google Scholar
  23. Hummel, K., O. Kundinger and A. Carl, 1981. The realistic prior probability from blood group findings for cases involving one or more men. Part II. Determining the realistic prior probability in one-man cases (forensic cases) in Freiburg, Munich, East Berlin, Austria, Switzerland, Denmark, and Sweden, pp. 81–87 in Biomathematical Evidence of Paternity, edited by K. Hummel and J. Gerchow. Springer-Verlag, Berlin.Google Scholar
  24. Ihm, P., 1961. Die mathematischen Grundlagen, vor allem fur die statistische Auswertung des serologischen and antropologischen Gutachtens, pp. 128–145 in Die Medizinische Vaterschaftsbegutachtung mit biostatistischem Beweis, edited by K. Hummel. Fischer, Stuttgart.Google Scholar
  25. Ihm, P., 1981. The problem of paternity in the light of decision theory, pp. 53–68 in Biomathematical Evidence of Paternity, edited by K. Hummel and J. Gerchow. Springer-Verlag, Berlin.Google Scholar
  26. Jeffreys, A.J., M. Turner and P. Debenham, 1991. The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am. J. Hum. Genet. 48: 824–840.PubMedGoogle Scholar
  27. Kaye, D.H. and R. Kanwischer, 1988. Admissibility of genetic testing in paternity litigation: a survey of state statutes. Fam. Law Q. 22: 109–116.Google Scholar
  28. Lander, E.S., 1989. DNA fingerprinting on trial. Nature 339: 501–505.PubMedCrossRefGoogle Scholar
  29. Lewontin, R.C. and D.L. Hartl, 1991. Population genetics in forensic DNA typing. Science 254: 1745–1750.PubMedCrossRefGoogle Scholar
  30. Martin, W., 1983. Consideration of `silent genes’ in the statistical evaluation of blood group findings in paternity testing, pp. 245–257 in Inclusion Probabilities in Parentage Testing, edited by R.H. Walker. American Association of Blood Banks, Arlington, Virginia.Google Scholar
  31. Mickey, M.R., J. Tiwari, J. Bond, D. Gjertson and P.I. Terasaki, 1983. Paternity probability calculations for mixed races, pp. 325–347 in Inclusion Probabilities in Parentage Testing, edited by R.H. Walker, American Association of Blood Banks, Arlington, Virginia.Google Scholar
  32. Mickey, M.R., D.W. Gjertson and P.I. Terasaki, 1986. Empirical validation of the Essen-Möllerprobability of paternity. Am. J. Hum. Genet. 39: 123–132.PubMedGoogle Scholar
  33. Morris, J.W., 1989. Experimental validation of paternity probability. (Letter to the Editor.) Transfusion 29: 281.Google Scholar
  34. Morris, J.W., R.A. Garber, J. d’Autremont and C.H. Brenner, 1988. The avuncular index and the incest index, pp. 607–611 in Advances in Forensic Haemogenetics 1. Springer-Verlag, Berlin.Google Scholar
  35. Morris, J.W. and D.W. Gjertson, 1993. The paternity index, population heterogeneity, and the product rule, in press in Advances in Forensic Haemogenetics 5. Springer-Verlag, Berlin.Google Scholar
  36. Morris, J.W. and D.W. Gjertson, 1994. Population genetics issues in disputed parentage, pp. 63–66 in Proceedings from The Fourth International Symposium on Human Identification 1993. Promega Corporation, Madison, Wisconsin.Google Scholar
  37. Morris, J.W., A.I. Sanda and J. Glassberg, 1989. Biostatistical evaluation of evidence from continuous allele frequency distribution deoxyribonucleic acid (DNA) probes in reference to disputed paternity and disputed identity. J. Forens. Sci. 34: 1311–1317.Google Scholar
  38. Morton, N.E., 1992. Genetic structure of forensic populations. Proc. Natl. Acad. Sci. USA 89: 2556–2560.PubMedCrossRefGoogle Scholar
  39. Potthoff, R.F. and M. Whittinghill, 1965. Maximum-likelihood estimation of the proportion of nonpaternity. Am. J. Hutn. Genet. 17: 480–494.Google Scholar
  40. Selvin, S., 1983. Some statistical properties of the paternity ratio, pp. 77–88 in Inclusion Probabilities in Parentage Testing, edited by R.H. Walker. American Association of Blood Banks, Arlington, Virginia.Google Scholar
  41. Weir, B.S., 1992. Population genetics in the forensic DNA debate. locus in Proc. Natl. Acad. Sci. USA 89: 11654–11659.PubMedCrossRefGoogle Scholar
  42. Wyman, A.R. and R. White, 1980. A hihgly polymorphic human DNA. Proc. Natl. Acad. Sci. 77: 6754–6758.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • David W. Gjertson
    • 1
    • 2
  • Jeffrey W. Morris
    • 2
  1. 1.UCLA Tissue Typing LaboratoryLos AngelesUSA
  2. 2.Long Beach GeneticsRancho DominguezUSA

Personalised recommendations