Advertisement

A comparison of tests for independence in the FBI RFLP data bases

  • P. J. Maiste
  • B. S. Weir
Chapter
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 4)

Abstract

Several tests of independence of allelic frequencies within and between loci have been compared, and it has been found that Fisher’s exact test is the best test to use. When this test is applied to RFLP databases established by the FBI, paying no attention to the single-band problem, there is generally evidence for independence at one locus but not at two loci. When the test is restricted to double-banded entries in the databases; there is overall evidence for independence.

Key words

Hardy-Weinberg forensic databasses statistical tests FBI data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. and D. Wackerly, 1977. Some exact conditional tests of independence for RxC cross-classification tables. Psychometrika 42: 111–125.CrossRefGoogle Scholar
  2. Berkson, J., 1978. In dispraise of the exact test. J. Stat. Planning and Inf. 2: 27–42.CrossRefGoogle Scholar
  3. Budowle, B., K.L. Monson, K.S. Anoe, F.S. Baechtel, D.L. Bergman, E. Buel, P.A. Campbell, M.E. Clement, H.W. Coey, L.A. Davis, A. Dixon, P. Fish, A.M. Guisti, T.L. Grant, T.M. Gronert, D.M. Hoover, L. Jankowski, A.J. Kilgore, W. Kimoto, W.H. Landrum, H. Leone, C.R. Longwell, D.C. MacLaren, L.E. Medlin, S.D. Narveson, M.L. Pierson, J.M. Pollock, R.J. Raquel, J.M. Reznicek, G.S. Rogers, J.E. Smerick and R.M. Thompson, 1991. A preliminary report on binned general population data on six VNTR loci in Caucasians, Blacks and Hispanics from the United States. Crime Lab. Digest 18: 9–26.Google Scholar
  4. Camilli, G., 1990. The test of homogeneity for 2 x 2 contingency tables: a review of and some personal opinions on the controversy. Psych. Bull. 108: 135–145CrossRefGoogle Scholar
  5. Casella, G. and R.L. Berger, 1990. Statistical Inference. Wadsworth and Brooks/Cole. Pacific Grove, CA.Google Scholar
  6. Cochran, W.G., 1954. Some methods for strengthening the common x2 tests. Biometrics 10: 417–451.CrossRefGoogle Scholar
  7. Cressie, N. and T.R.C. Read, 1984. Multinomial goodness of fit tests. J. Roy. Stat. Soc. B 46: 440–464.Google Scholar
  8. Cressie, N. and T.R.C. Read, 1989. Pearson’s X2 and the loglikelihood ratio statistic G2: a comparative review. Int. Stat. Rev. 57: 1943.Google Scholar
  9. D’Agostino, R.B., W. Chase and A. Belanger, 1988. The appropriateness of some common procedures for testing the equality of two independent binomial populations. Am. Statist. 42: 198–202.Google Scholar
  10. Elston, R.C. and R. Foethofer, 1977. Testing for Hardy Weinberg equilibrium in small samples. Biometrics 33: 536–542.CrossRefGoogle Scholar
  11. Emigh, T.H., 1978. The power of tests for random mating in genetics. Biometrics 34: 730.Google Scholar
  12. Emigh, T.H., 1980. A comparison of tests for Hardy-Weinberg equilibrium. Biometrics 36: 627–642.CrossRefGoogle Scholar
  13. Emigh, T.H. and O. Kempthorne, 1975. A note on goodness-of-fit of a population to Hardy-Weinberg structure. Am. J. Hum. Genet. 27: 778–783.PubMedGoogle Scholar
  14. Fienberg, S.E., 1979. The use of chi-square statistics for categorical data problems. J. Roy, Stat. Soc. B 41: 54–64.Google Scholar
  15. Fisher, R.A., 1924. The conditions under which x2 measures the discrepancy between observation and hypothesis. J. Roy. Stat. Soc. 87: 442–450.CrossRefGoogle Scholar
  16. Fisher, R.A., 1935. The logic of inductive inference. J. Roy. Stat. Soc. 98: 39–54.CrossRefGoogle Scholar
  17. Gibbons, J.D. and J.W. Pratt, 1975. P-values: interpretation and methodology. Am. Statist. 29: 20–25.Google Scholar
  18. Greenland, S., 1991. On the logical justification of conditional tests for two-by-two contingency tables. Am. Statist. 45: 248–251.Google Scholar
  19. Guo, S.W. and E.A. Thompson, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372.PubMedCrossRefGoogle Scholar
  20. Haber, M., 1981. Exact significance levels of goodness-of-fit tests for the Hardy-Weinberg equilibrium. Hum. Hered. 31: 161–166.PubMedCrossRefGoogle Scholar
  21. Hernandez, J.L. and B.S. Weir. 1989. A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics 45: 53–70.PubMedCrossRefGoogle Scholar
  22. Koehler, K.J., 1986. Goodness of fit tests for log linear models in sparse contingency tables. J. Am. Stat. Assoc. 81: 483–493.CrossRefGoogle Scholar
  23. Koehler, K. and K. Larntz, 1980. An empirical investigation of goodness-of-fit statistics for sparse multinomials. J. Am. Stat. Assoc. 75: 336–344.CrossRefGoogle Scholar
  24. Kullback, S., 1959. Information Theory and Statistics. Wiley, New York.Google Scholar
  25. Kullback, S., 1985. Minimum discrimination information (MDI) estimation. In Encyclopedia of Statistical Sciences 5: 527–529, Ed. S. Kotz and N.L. Johnson. Wiley, New York.Google Scholar
  26. Larntz, K., 1978. Small sample comparisons of exact levels for chi-squared goodness-of-fit statistics. J. Am. Stat. Assoc. 73: 253–263.CrossRefGoogle Scholar
  27. Little, R.J.A., 1989. Testing the equality of two independent binomial proportions. Am. Statist. 43: 283–288.Google Scholar
  28. Louis, E.J. and E.R. Dempster, 1987. An exact test for Hardy-Weinberg equilibrium and multiple alleles. Biometrics 43: 805–811.PubMedCrossRefGoogle Scholar
  29. Maiste, P.J., 1993. Comparison of Statistical Tests for Independence at Genetic Loci with Many Alleles. Ph.D. Thesis, North Carolina State University, Raleigh, NC.Google Scholar
  30. Moore, D.S., 1986. Tests of chi-squared type. In Goodness-of-Fit Techniques, Ed. R.B. D’Agostino and M.A. Stephens, pp. 6395, Marcel Dekker, New York.Google Scholar
  31. Neyman, J., 1949. Contribution to the theory of the x2 test. Proc. 1st Berk. Symp. Math. Stat. Prob. pp. 239–273.Google Scholar
  32. Pearson, K., 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling. Phil Mag. Series (5) 50: 157–172.Google Scholar
  33. Radlow, R. and H.F. Alf, 1975. An alternate multinomial assessment of the accuracy of the x2 test of goodness of fit. J. Am. Stat. Assoc. 70: 811–813.Google Scholar
  34. Read, T.R.C., 1982. On choosing a goodness-of-fit test. Ph.D. Thesis, Flinders University, South Australia.Google Scholar
  35. Storer, R.E. and C. Kim, 1990. Exact properties of some exact test statistics for comparing two binomial proportions. J. Am. Stat. Assoc. 85: 146–155CrossRefGoogle Scholar
  36. Suissa, S. and J.J. Shuster, 1985. Exact unconditional sample sizes for the 2 x 2 binomial trial. J. Roy. Stat. Soc. A 148: 317–327.CrossRefGoogle Scholar
  37. Upton, G.J.G., 1982. A comparison of alternative tests for the 2 x 2 comparative trial. J. Roy. Stat. Soc. A t45: 86–185.CrossRefGoogle Scholar
  38. Weir, B.S., 1990. Genetic Data Analysis. Sinauer, Sunderland, MA. Weir, B.S. 1992., Independence of VNTR alleles defined as fixed bins. Genetics 130: 873–887.Google Scholar
  39. Weir, B.S., 1993. Independence tests for VNTR alleles defined as quantile bins. Am. J. Hum. Genet. 53: 1107–1113.PubMedGoogle Scholar
  40. Weir, B.S., 1994. The effects of inbreeding on forensic calculations. Ann. Rev. Genet. 28: 597–621.CrossRefGoogle Scholar
  41. Yates, E, 1984. Tests of significance for 2 x 2 contingency tables (with discussion). J. Roy. Stat. Soc. A 147: 426–463.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • P. J. Maiste
    • 1
  • B. S. Weir
    • 1
  1. 1.Program in Statistical Genetics, Department of StatisticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations