Clinical PET pp 176-199 | Cite as

Dementia and Cerebrovascular Disease

  • Sang-Eun Kim
  • Myung-Chul Lee


Dementia is a major public health challenge, not only for clinicians, but also for society as a whole. Prevalence rates of dementia are dependent on age, being reported as high as 24% to 48% in those older than 85 years.1,2 The overall prevalence in North America in those older than 65 years is 8% to 10%, or more than 27 million people.2 Furthermore, mortality is increased threefold in those with dementia.1 The proportion of elderly in our population is growing rapidly; with current prevalence rates, the number of individuals with dementia older than 65 years will more than double by 2021.2 Thus, there is an increasing demand on the health care system and public resources to care for people with dementia.


Positron Emission Tomography Single Photon emiSSion Compute Tomography Lewy Body Dementia With Lewy Body Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronson MK, Ooi WL, Geva DL, et al. Dementia: age-dependent incidence, prevalence, and mortality in the old. Arch Intern Med 1991; 151: 989–992.PubMedCrossRefGoogle Scholar
  2. 2.
    Canadian Study of Health and Aging Working Group. Canadian study of health and aging: study methods and prevalence of dementia. Can Med Assoc J 1994; 150: 899–913.Google Scholar
  3. 3.
    Clarfield AM. The reversible dementias: do they reverse? Ann Intern Med 1988; 9: 476–486.Google Scholar
  4. 4.
    Kukull WA, Larson EB, Reifler BV, et al. The validity of three clinical diagnosis criteria for Alzheimer’s disease. Neurology 1990; 40: 1364–1369.PubMedCrossRefGoogle Scholar
  5. 5.
    McKeith IG, Perry RH, Fairbairn AF, et al. Operational criteria for senile dementia of Lewy body type (SDLT). Psychol Med 1992; 22: 911–922.PubMedCrossRefGoogle Scholar
  6. 6.
    Mesulam MM, Mufson EJ, Levey AI, et al. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 1983; 214 (2): 170–197.PubMedCrossRefGoogle Scholar
  7. 7.
    Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 1983; 219: 1184–1190.PubMedCrossRefGoogle Scholar
  8. 8.
    Bierer LM, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 1995; 64: 749–760.PubMedCrossRefGoogle Scholar
  9. 9.
    Boller F, Lopez OL, Moossy J. Diagnosis of dementia: clinicopathological correlations. Neurology 1989; 39: 76–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Nordberg A. Neuroreceptor changes changes in Alzheimer disease. Cerebrovasc Brain Metab Rev 1992; 4; 303–328.PubMedGoogle Scholar
  11. 11.
    Flynn DD, Ferrari-DiLeo G, Levey AI, et al. Differential alterations in muscarinic receptor subtypes in Alzheimer’s disease: implications for cholinergic based therapies. Life Sci 1995; 56: 869–876.PubMedCrossRefGoogle Scholar
  12. 12.
    Court JA, Perry EK. Distribution of nicotinic receptors in the CNS. In: Stone TW, ed. CNS Neurotransmitters and Neuromodulators. London: CRC Press, 1995: 85–104.Google Scholar
  13. 13.
    Kellar KJ, Wonnacott S. Nicotinic cholinergic receptors in Alzheimer’s disease. In: Wonnacott S, Russell MAH and Stolerman IP, eds. Nicotine Psychopharmacology: Molecular, Cellular and Behavioural Aspects. Oxford, UK: Oxord University Press, 1990: 341–373.Google Scholar
  14. 14.
    Davies P, Feisullin S. Postmortem stability of a-bungarotoxin binding sites in mouse and human brain. Brain Res 1981; 216: 449–454.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugaya K, Giacobini E, Chiappinelli VA. Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer’s disease. J Neurosci Res 1990; 27: 349–359.PubMedCrossRefGoogle Scholar
  16. 16.
    Norberg A. The effect of cholinesterase inhibitors studied with brain imaging. In: Giacobini E, ed. Cholinesterases and Cholinesterase Inhibitors. London: Martin Dunitz, Ltd 2000: 237–247.Google Scholar
  17. 17.
    Frey KA, Minoshima S, Kuhl DE. Neurochemical imaging of Alzheimer’s disease and other degenerative dementias. Q J Nucl Med 1998; 42: 166.PubMedGoogle Scholar
  18. 18.
    Langlais PJ, Thal L, Hansen L, et al. Neurotransmitters in basal ganglia and cortex of Alzheimer’s disease with and without Lewy bodies. Neurology 1993; 43: 1927–1934.PubMedCrossRefGoogle Scholar
  19. 19.
    Perry EK, Marshall E, Perry RH, et al. Cholinergic and dopaminergic activities in senile dementia of Lewy body type. Alzheimer Dis Assoc Disord 1990; 4: 87–95.PubMedGoogle Scholar
  20. 20.
    Perry E, Goodchild R, Griffiths M, et al. Clinical neurochemistry: developments in dementia research based on brain bank material. J Neural Transm 1998; 105: 915–933.PubMedCrossRefGoogle Scholar
  21. 21.
    Homer AC, Honavar M, Lantos PL, et al. Diagnosis dementia: do we get it right? BMJ 1988; 297: 894–896.PubMedCrossRefGoogle Scholar
  22. 22.
    Jellinger K, Danielxzyk W, Fisher P, et al. Clinicopathological analysis of dementia disorders in the elderly. J Neurol Sci 1990; 95: 239–258.PubMedCrossRefGoogle Scholar
  23. 23.
    Gilleard CJ, Kellett JM, Coles JA, et al. The St. George’s dementia bed investigation: a comparison of clinical and pathological diagnosis. Acta Psychiatr Scand 1992; 85: 265–269.CrossRefGoogle Scholar
  24. 24.
    Crystal H, Dickson MD, Fuld P, et al. Clinicopathological studies in dementia: non-demented subjects with pathologically confirmed Alzheimer’s disease. Neurology 1988; 38: 1682–1687.PubMedCrossRefGoogle Scholar
  25. 25.
    Kamo H, McGeer PL, Harrop R, et al. Positron emission tomography and histopathology in Pick’s disease. Neurology 1987; 37: 439–445.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuhl DE, Phelps ME, Markham CH, et al. Cerebral metabolism and atrophy in Huntington’s disease determined by F-18 FDG and computed tomographic scan. Ann Neurol 1982; 12: 425–434.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayden MR, Martin WRW, Stoessl AJ, et al. Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 1986; 36: 888894.Google Scholar
  28. 28.
    Mazziotta JC. Huntington s disease: studies with structural imaging techniques and positron emission tomography. Semin Neurol 1989; 9: 360–369.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Antona R, Baron JC, Samson T, et al. Subcortical dementia: frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain 1985; 108: 785–799.PubMedCrossRefGoogle Scholar
  30. 30.
    Foster NL, Gilman S, Berent S, et al. Cerebral hypometabolism in progressive supranuclear palsy studies with positron emission tomography. Ann Neurol 1998; 104: 754–778.Google Scholar
  31. 31.
    Benson DF, Kuhl DE, Hawkins RA, et al. The F-18 fluorodeoxyglucose scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 1983; 40: 711–714.PubMedCrossRefGoogle Scholar
  32. 32.
    Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 85–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Szelies B, Herholz K, Pawlik G, et al. Cerebral glucose metabolism in pre-senile dementia of the Alzheimer type: follow-up of therapy with muscarinergic choline agonists. Fortschr Neurol Psychiatr 1986; 54: 364–373.PubMedCrossRefGoogle Scholar
  34. 34.
    Ishii K, Sasaki M, Kitagaki H, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997; 38: 925–992PubMedGoogle Scholar
  35. 35.
    Johnson KA, Jones BL, Holman JA, et al. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998; 50: 1563–1571.PubMedCrossRefGoogle Scholar
  36. 36.
    Gomez-Isla T, Price TL, McKeel DW, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996; 16: 4491–4500.PubMedGoogle Scholar
  37. 37.
    Welsh KA, Butters N, Hughes JP, et al. Detection and staging of demential in Alzheimer’s disease: use of the neuropsychological measures developed for the consortium to establish a registry for Alzheimer’s disease. Arch Neurol 1992; 49: 448–452.PubMedCrossRefGoogle Scholar
  38. 38.
    Ohnishi T, Hoshi H, Nagamachi S, et al. High-resolution SPECT to assess hippocampal perfusion in neuropsychiatric diseases. J Nucl Med 1995; 36: 1163–1169.PubMedGoogle Scholar
  39. 39.
    Julin P, Lindqvist J, Svensson L, et al. MRI-guided SPECT measurements of medial temporal lobe blood flow in Alzhemer’s disease. J Nucl Med 1997; 38: 914–919.PubMedGoogle Scholar
  40. 40.
    Rodriguez G, Nohili F, Copello F, et al. 99mTc-HMPAO regional cerebral blood flow and quantitative electroencephalography in Alzheimer’s disease: a correlative study. J Nucl Med 1999; 40: 522–529.PubMedGoogle Scholar
  41. 41.
    Braak H, Braak E. Neuropathological staging of Alzheimer related changes. Acta Neuropathol 1991; 82: 239–256.PubMedCrossRefGoogle Scholar
  42. 42.
    Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain 1999; 122: 383–404.Google Scholar
  43. 43.
    Geaney DP, Soper N, Shepstone BJ, et al. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet 1990; 335: 1484–1487.PubMedCrossRefGoogle Scholar
  44. 44.
    Gustafson L, Edvinsson L, Dahlgren N, et al. Intravenous physostigmine treatment of Alzheimer’s disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacol Berl 1987; 93: 31–35.CrossRefGoogle Scholar
  45. 45.
    van Dyck CH, Lin CH, Robinson R, et al. The acetylcholine releaser linopirdine increases parietal regional cerebral blood flow in Alzheimer’s disease. Psychopharmacol (Berl) 1997; 132: 217–226.CrossRefGoogle Scholar
  46. 46.
    Staff RT, Gemmell HG, Shanks MF, et al. Changes in the rCBF images of patients with Alzheimer’s disease receiving Donepezil therapy. Nucl Med Commun 2000; 21: 37–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Warren S, Hier DB, Pavel D. Visual form of Alzheimer’s disease and its response to anticholinesterase therapy. Neuroimaging 1998; 8: 249–252.CrossRefGoogle Scholar
  48. 48.
    Nordberg A. PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol Paris 1999; 155 (suppl 4): S53 - S63.PubMedGoogle Scholar
  49. 49.
    Foster NL, Chase TN, Fedio P. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 1983; 33: 961–965.PubMedCrossRefGoogle Scholar
  50. 50.
    Friedland RP, Budinger TF, Koss E, et al. Alzheimer’s disease: anterior-posterior hemispheric alterations in cortical glucose utilization. Neurosic Lett 1985; 53: 235–240.CrossRefGoogle Scholar
  51. 51.
    Haxby JV, Grady CL, Koss E, et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 1990; 47: 753–760.PubMedCrossRefGoogle Scholar
  52. 52.
    Barrio JR, Huang SC, Cole G, et al. PET imaging of tangles and plaques in Alzheimer disease with a highly hydrophobic probe. J Labelled Cpd Radiopharm 1997; 42 (1): 5194–5195.Google Scholar
  53. 53.
    Ding YS, Logan J, Bermel R, et al. Dopamine receptor-mediated regulation of striatal cholinergic activity: positron emission tomography studies with norchloro F-18 fluoroepibatidine. Neurochemistry 2000; 74 (4): 1514–1521.Google Scholar
  54. 54.
    Bornebroek M, Verzijlbergen JF, Haan J, et al. Potential for imaging cerebral amyloid deposits using 123I-labelled serum amyloid P component and SPECT. Nucl Med Commun 1996; 17: 929–933.PubMedCrossRefGoogle Scholar
  55. 55.
    Bench CJ, Dolan RJ, Friston KJ, et al. Positron emission tomography in the study of brain metabolism in psychiatric and neuropsychiatric disorders. Br J Psychiatr 1990; 157 (9): 82–95.Google Scholar
  56. 56.
    Weiner MF. Dementia associated with Lewy bodies. Arch Neurol 1999; 56: 1441–1442.PubMedCrossRefGoogle Scholar
  57. 57.
    Holmes C, Cairns N, Lantos P, et al. Validity of current clinical criteria for Alzheimer’s disease, vascular dementia with Lewy bodies. Br J Psychiatry 1999; 174: 45–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Byrne E J, Lennox G, Lowe J, et al. Diffuse Lewy body disease: clinical features in 15 cases. J Neurol Neurosurg Psychiatry 1989; 52: 709–717.PubMedCrossRefGoogle Scholar
  59. 59.
    Barber R, Scheltens P, Gholkar A, et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. J Neurol Neurosurg Psychiatry 1999; 67: 66–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Imamura T, Ishii K, Sasaki M, Kitagaki H, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography. Neurosci Lett 1997; 235 (1–2): 49–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Walker Z, Costa DC, Inca P, et al. In-vivo demonstration of dopaminergic degeneration in dementia with Lewy bodies. Lancet 1999; 354: 646–647.PubMedCrossRefGoogle Scholar
  62. 62.
    Rirme JO, Laine M, Kaasinen V, et al. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 2002; 58 (10): 1489–1493.CrossRefGoogle Scholar
  63. 63.
    Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal F-18 dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990; 28 (4): 547–555.PubMedCrossRefGoogle Scholar
  64. 64.
    Ilgin N, Zubieta J, Reich SG, et al. PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 1999; 52 (6): 1221–1226.PubMedCrossRefGoogle Scholar
  65. 65.
    Leenders KL, Frackowiak RS, Lees AJ. Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 1988; 111 (33): 615–630.PubMedCrossRefGoogle Scholar
  66. 66.
    Snow BJ, Bhatt M, Martin WR, et al. The nigrostriatal dopaminergic path-way in Wilson’s disease studied with positron emission tomography. J Neurol Neurosurg Psychiatry 1991; 54 (1): 12–17.PubMedCrossRefGoogle Scholar
  67. 67.
    Laureys S, Salmon E, Garraux G, et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 1999; 246 (12): 1151–1158.PubMedCrossRefGoogle Scholar
  68. 68.
    Garraux G, Salmon E, Peigneux P, et al. Voxel-based distribution of metabolic impairment in corticobasal degeneration. Mov Disord 2000; 15 (5): 894–904.PubMedCrossRefGoogle Scholar
  69. 69.
    Lutte I, Laterre C, Bodart JM, et al. Contribution of PET studies in diagnosis of corticobasal degeneration. Eur Neurol 2000; 44 (1): 12–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Dolan RJ, Bench CJ, Brown RG, et al. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiatry 1992; 55 (9): 768–773.PubMedCrossRefGoogle Scholar
  71. 71.
    Cho MJ, Lyoo IK, Lee DW, et al. Brain single photon emission computed tomography findings in depressive pseudodementia patients. J Affect Disord 2002; 69 (1–3): 159–166.PubMedCrossRefGoogle Scholar
  72. 72.
    Alexopoulos GS, Meyers BS, Young RC, Mattis S, Kakuma T. The course of geriatric depression with “reversible dementia”: a controlled study. Am J Psychiatry 1993; 150: 1693–1699.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Sang-Eun Kim
  • Myung-Chul Lee

There are no affiliations available

Personalised recommendations